BACKGROUNDHypertension, hyperlipidemia, diabetes, and obesity in middle adulthood each elevate the long-term risk of cardiovascular disease (CVD). The prevalence of these conditions among women veterans is incompletely described.OBJECTIVETo describe the prevalence of CVD risk factors among women veterans in middle adulthood.DESIGNSerial cross-sectional studies of data from the Diabetes Epidemiologic Cohorts (DEpiC), a national, longitudinal data set including information on all patients in the Veterans Health Administration (VA).PARTICIPANTSWomen veterans (n = 255,891) and men veterans (n = 2,271,605) aged 35–64 receiving VA care in fiscal year (FY) 2010.MAIN MEASURESPrevalence of CVD risk factors in FY2010 by age and, for those aged 45–54 years, by race, region, period of military service, priority status, and mental illness or substance abuse; prevalence by year from 2000 to 2010 in women veterans receiving VA care in both 2000 and 2010 who were free of the factor in 2000.KEY RESULTSHypertension, hyperlipidemia, and diabetes were common among women and men, although more so among men. Hypertension was present in 13 % of women aged 35–44 years, 28 % of women aged 45–54, and 42 % of women aged 55–64. Hyperlipidemia prevalence was similar. Diabetes affected 4 % of women aged 35–44, and increased more than four-fold in prevalence to 18 % by age 55–64. The prevalence of obesity increased from 14 % to 18 % with age among women and was similarly prevalent in men. The relative rate of having two or more CVD risk factors in women compared to men increased progressively with age, from 0.55 (35–44 years) to 0.71 (45–54) to 0.73 (55–64). Most of the women with a factor present in 2010 were first diagnosed with the condition in the 10 years between 2000 and 2010.CONCLUSIONSCVD risk factors are common among women veterans aged 35–64. Future research should investigate which interventions would most effectively reduce risk in this population.Electronic supplementary materialThe online version of this article (doi:10.1007/s11606-013-2381-9) contains supplementary material, which is available to authorized users.
The female reproductive function largely depends on timing and coordination between follicle-stimulating hormone (FSH) and luteinizing hormone. Even though it was suggested that these hormones act on granulosa cells via shared signaling pathways, mainly protein kinases A, B, and C (PKA, PKB, and PKC), there is still very little information available on how these signaling pathways are regulated by each hormone to provide such differences in gene expression throughout folliculogenesis. To obtain a global picture of the principal upstream factors involved in PKA, PKB, and PKC signaling in granulosa cells, human granulosa-like tumor cells (KGN) were treated with FSH or specific activators (forskolin, SC79, and phorbol 12-myristate 13-acetate) for each pathway to analyze gene expression with RNA-seq technology. Normalization and cutoffs (FC 1.5, P ≤ 0.05) revealed 3864 differentially expressed genes between treatments. Analysis of major upstream regulators showed that PKA is a master kinase of early cell differentiation as its activation resulted in the gene expression profile that accompanies granulosa cell differentiation. Our data also revealed that the activation of PKC in granulosa cells is also a strong differentiation signal that could control “advanced” differentiation in granulosa cells and the inflammatory cascade that occurs in the dominant follicle. According to our results, PKB activation provides support for PKA-stimulated gene expression and is also involved in granulosa cell survival throughout follicular development. Taken together, our results provide new information on PKA, PKB, and PKC signaling pathways and their roles in stimulating a follicle at the crossroad between maturation/ovulation and atresia.
The developmental competence of an oocyte is its capacity to resume maturation, undergo successful fertilization, and reach the blastocyst stage. This competence is acquired through interaction with somatic cells of the follicle. Cumulus and granulosa cells support oocyte development, while the oocyte influences follicular cell growth and differentiation. Studies suggest that follicle-stimulating hormone and luteinizing hormone play an essential role in oocyte competence acquisition through signaling initiated by protein kinases A and C (PKA and PKC) in granulosa cells. Using a microarray and RT-qPCR, the transcriptome of human granulosa-like tumor cells (KGN) treated for 24 h with forskolin (FSK) or phorbol 12-myristate 13-acetate (PMA) was analyzed to determine the effects of PKA and PKC stimulation on gene expression. Protein-kinase-driven signaling appeared to involve five major upstream regulators, namely epidermal growth factor (EGF), transforming growth factor beta 1 (TGFβ1), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF2), and hepatocyte growth factor (HGF). Gene associations with seven major ovarian functions were identified: Prostaglandin- endoperoxide synthase 2 (PTGS2), interleukin 8 (IL8), and interleukin 6 (IL6) with inflammation; Steroidogenic acute regulatory protein (STAR), cytochrome P450scc (CYP11A1), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) with steroidogenesis; Vascular endothelial growth factor C (VEGFC), Vascular endothelial growth factor A (VEGFA), and C-X-C chemokine receptor type 4 (CXCR4) with angiogenesis; Amphiregulin (AREG), epidermal growth factor receptor (EGFR), and sprouty RTK signaling antagonist 2 (SPRY2) with differentiation, BCL2 associated X (BAX), BCL2 like 12 (BCL2L12), and caspase 1(CASP1) with apoptosis, Cyclin D1 (CCND1), cyclin B1 (CCNB1), and cyclin B2 (CCNB2) with division; and Matrix metalloproteinase-1 (MMP1), Matrix metallopeptidase 9 (MMP9), and TIMP metallopeptidase inhibitor 1 (TIMP1) with ovulation. Overall, these results indicate that signaling via both PKA and PKC potentiates gene regulation of functions such as inflammation and apoptosis, while functions such as differentiation, ovulation and angiogenesis are partial to one kinase or the other. These results improve understanding of the pathways underlying the most important changes that occur in the follicle prior to ovulation.
Maternal metabolic disorders such as obesity and diabetes are detrimental factors that compromise fertility and the success rates of medically assisted procreation procedures. During metabolic stress, adipose tissue is more likely to release free fatty acids (FFA) in the serum resulting in an increase of FFA levels not only in blood, but also in follicular fluid (FF). In humans, high concentrations of palmitic acid and stearic acid reduced granulosa cell survival and were associated with poor cumulus-oocyte complex (COC) morphology. Obesity and high levels of circulating FFA were also causatively linked to hampered insulin sensitivity in cells and compensatory hyperinsulinemia. To provide a global picture of the principal upstream signaling pathways and genomic mechanisms involved in this metabolic context, human granulosa-like tumor cells (KGN) were treated with a combination of palmitic acid, oleic acid, and stearic acid at the higher physiological concentrations found in the follicular fluid of women with a higher body mass index (BMI) (≥ 30.0 kg/m2). We also tested a high concentration of insulin alone and in combination with high concentrations of fatty acids. Transcription analysis by RNA-seq with a cut off for fold change of 1.5 and p-value 0.05 resulted in thousands of differentially expressed genes for each treatment. Using analysis software such as Ingenuity Pathway Analysis (IPA), we were able to establish that high concentrations of FFA affected the expression of genes mainly related to glucose and insulin homoeostasis, fatty acid metabolism, as well as steroidogenesis and granulosa cell differentiation processes. The combination of insulin and high concentrations of FFA affected signaling pathways related to apoptosis, inflammation, and oxidative stress. Taken together, our results provided new information on the mechanisms that might be involved in human granulosa cells exposed to high concentrations of FFA and insulin in the contexts of metabolism disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.