Coagulase-negative staphylococci (CNS) are frequently isolated from blood cultures, where they may be only a contaminant or the cause of bacteraemia. Determining whether an isolate of CNS represents a true CNS bacteraemia is difficult, and there is no single criterion with sufficient specificity. The aim of this study was to assess those clinical, microbiological, pathogenic and genotypic features that characterize true CNS bacteraemia. Twenty patients having two or more blood cultures positive for CNS and 20 patients with only one positive blood culture were studied. Significant bacteraemia was defined according to clinical and laboratory criteria. Incubation time for blood cultures to become positive, macroscopic appearance of colonies, species determination, biotype, susceptibility to antimicrobials, PFGE pattern and adherence capacity were all studied. Clinical bacteraemia was present in 16/20 patients with two or more positive blood cultures and in 2/ 20 patients with only one positive blood culture. A significant difference was seen in the median time to positivity between the 18 clinical bacteraemias and 22 contaminations (23 . 6 versus 29 . 2 h; P ¼ 0 . 04, Wilcoxon). There was also a significant difference between the two groups in the median absorbance of the slime test (1 . 36 versus 0 . 58; P ¼ 0 . 005). All significant bacteraemias with two or more positive blood cultures had the same species identified, the same antimicrobial susceptibility pattern and the same PFGE pattern. In two patients with true bacteraemia with only one positive blood culture, the incubation time for the culture to turn positive was ,24 h and the slime production absorbance was .2 . 5. The most useful parameters for the diagnosis of true CNS bacteraemia for patients with two positive blood cultures were incubation time until positive, species identification, antimicrobial susceptibility pattern, slime production and PFGE pattern. For patients with only one blood culture positive for CNS, the useful parameters for prediction of true bacteraemia were incubation time until positive and slime production, both of which are simple, low-cost tests.
The interaction between acute myeloid leukemia cells (AML) with the bone marrow stroma cells (BMSCs) determines a protective environment that favors tumor development and resistance to conventional chemotherapy. We showed that BMSCs secrete soluble factors that protect AML cells from Ara-C induced cytotoxicity. This leukemia chemoresistance is associated with a decrease in the equilibrative nucleoside transporter (ENT1) activity by inducing removal of ENT1 from the cell surface. Reduction of cell proliferation was also observed with activation of AKT and mTOR-dependent cell survival pathways, which may also contribute to the tumor chemoprotection. Analysis of primary BMSC cultures has demonstrated that AML patients with stroma capable to confer Ara-C resistance in vitro compared to AML patients without this stroma capacity were associated with a worse prognosis. The two year overall survival rate was 0% versus 80% respectively (p=0.0001). This is the first report of a chemoprotection mechanism based on the removal of a drug transporter from the cell surface and most importantly the first time that a stroma phenotype has correlated with prognostic outcome in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.