Many previous studies have demonstrated that antisense oligodeoxynucleotides (ODNs) bind to surface proteins in a manner compatible with receptor-mediated endocytosis and, unless specifically modified, are internalized into endosomes with little access to the cytoplasmic structures or to the nucleus. Reports vary as to the specific proteins involved in the mechanism, and this study examines the conditions of binding, some proteins that might contribute to the process, and whether changes in binding patterns occur during differentiation. Native gel electrophoresis was used to optimize the surface binding of a phosphorothioate end-capped 16-mer to T15 mouse fibroblast cells, and comparisons are made with some human epithelial tumor cell lines. Binding to individual proteins was visualized using SDS-PAGE and autoradiography. Binding at 4 degrees C was almost exclusively to a 46 kDa protein and decreased in the presence of an excess of unlabeled ODN and heparin but not ATP. Increasing the temperature of ODN binding from 4 degrees C to 37 degrees C for 10 minutes changed the binding pattern observed. ODN binding to the total cytoplasmic and membrane proteins immobilized on a membrane showed a greater number of binding proteins, the most prominent being one of 30 kDa. Examination of the effects of serum on binding were made using the human lung carcinoma cell line COR-L23, which can be grown in serum-free conditions. Serum starvation led to an increased total binding seen on native gels coinciding with increased binding to a 46 kDa protein. Demonstration that changes in binding proteins occur when cells differentiate was made using the premacrophage cell line THP-1. Differentiation of these cells increased the total ODN binding and appeared to initiate the synthesis of some new binding proteins, although binding to a 46 kDa protein was reduced.
The binding of uniformly modified N3'-->P5' phosphoramidate and stereorandom and stereopure phosphorothioate oligonucleotides (ODN) to cell surface proteins was studied, using both a fibroblast and an epithelial cell line, to assess the effect of different analog backbone types and base composition on cell surface protein binding. Marked differences were observed, both quantitative and qualitative, in the proteins to which individual ODN bound. One phosphoramidate, antisense to the insulin-like growth factor-1 (IGF-1) receptor (IGF-1R), bound to different proteins than did either a 6-base mismatch phosphoramidate IGF-1R sequence or a sense N-ras sequence. The latter bound poorly to the fibroblast line and predominantly to a 46 kDa protein in the epithelial line, as did many of the other ODN. This binding was not so marked as that of the isosequential end-capped phosphodiester N-ras sequence, which bound to this protein in both cell lines. Stereopure and stereorandom phosphorothioates containing a G-quartet (shown in other studies to form high-order tetrad structures), antisense to c-myc, exhibited considerable nonspecific binding to many proteins, as did the isosequential phosphoramidate. In particular, this ODN sequence gave notable binding to high molecular weight proteins. In general, binding of the c-myc ODN to proteins of 28-30, 46, 67, and 70-90 kDa was found in this study.
A mixed phosphodiester:phosphorothioate oligodeoxynucleotide was used in uptake studies with T15 mouse fibroblast cells. The presence of full-length unlabeled oligomers was identified in both cytoplasmic and nuclear extracts by a method involving gel electrophoresis and electroblotting followed by hybridization with a complementary radiolabeled probe. Detection did not depend on the presence of a label on the oligomer with the potential for its removal, often a problem in other studies. The fate of the oligonucleotides could then be followed with time for at least 3 days. This method of detection should be applicable to studies of nuclease resistance and uptake characteristics of newly developed oligonucleotide analogues.
Cell aging and the degree of cellular differentiation are thought to be important variables governing uptake of oligonucleotides but remain poorly understood. The Caco-2 colon carcinoma cell line has the ability to spontaneously differentiate into enterocytes in vitro and serves as a useful model to further investigate the effect of differentiation on oligonucleotide binding and uptake. In this study, we report that the extent of oligonucleotide association and the expression of cell surface binding proteins are governed by the age and thus the degree of differentiation of Caco-2 epithelial cells in culture. Cellular association (normalized for cell number) of an all phosphodiester (PO), all phosphorothioate (PS), and a phosphodiester oligonucleotide containing two terminal phosphorothioate internucleotide linkages at the 3' end (EC-PO) gradually increased from day 3 to around day 17 of the culture, followed by a plateau, or slight decrease, up to day 21 of the cell aging study. Overall, a threefold to fourfold increase in binding was observed from day 3 to day 17. Oligonucleotide binding was temperature and pH dependent, but the magnitude of the effect was influenced by cell aging and the degree of differentiation. PS oligonucleotides exhibited greater binding (up to threefold) at the basolateral surface compared with the apical surface within the pH range 5-7. These findings could be directly correlated with the expression levels of cell surface oligonucleotide binding proteins during the aging study. A Caco-2 cell surface protein binding complex of around 46 kDa was identified as the major site of binding for both PO and PS oligonucleotides, although the latter also bound to several other proteins, especially at low pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.