Pasture management in Australia’s dairy industry requires the manual shifiting of temporary electric fences to maintain pasture quality and growth. Virtual fencing presents an alternative to save time and labour costs. We used automated virtual fence (VF) collars to determine the variation in learning of the virtual fence stimuli, and evaluated the success of the technology to contain cows in a predetermined area of pasture. Twelve Holstein-Friesian non-lactating multiparous dairy cows were fitted with the collars, and a VF was used to restrict cows to two grazing allocations (G1 and G2) across six days. Cows received an audio tone (AT) when they approached the virtual fence, and a paired electrical pulse (EP) if they continued forward. The VF contained cows within predetermined areas for 99% of time, but cows spent the least time near the fence (p < 0.01). The number of stimuli reduced through time, demonstrating the ability of cows to learn the VF (p = 0.01). However, the mean number of EP per day ranged from 1 to 6.5 between individuals (p < 0.01). Therefore, successful containment may have a welfare cost for some individuals. Further work should focus on this individual variation, including measures of welfare.
Pre-commercial virtual fence (VF) neckbands (eShepherd®, Agersens, Melbourne, Vic, Australia) can contain cows within a designated area without the need for physical fencing, through associative learning of a paired audio tone and electrical pulse. Cattle are gregarious, so there may be an impact of herd mates on the learning process. To evaluate this, a VF was set 30 m down one of three test paddocks with a feed attractant 70 m past the VF. Twenty-three Holstein-Friesian cows were all fitted with VF neckbands and trained as individuals or in groups (5–6) for four 10 min tests; then, cows were crossed over to the alternate context for two more 10 min tests. The number of cows breaking through the VF and the number of paired stimuli reduced across time (from 82% to 26% and 45% to 14%, respectively, p < 0.01). Cows trained in a group (88%) were more likely to interact with the VF in the crossover compared to those trained as individuals (36%) (p < 0.01), indicating an influence of group members on individual cow response. Individual training is impractical, therefore, future research should evaluate group training protocols ensuring all cows learn the VF to avoid any adverse impacts on animal welfare.
Pasture-based dairy systems rely on the accurate allocation of pasture to both meet livestock requirements and maintain the growth of herbage. Currently, physical fences are used to contain livestock however they can be labor-intensive to shift and maintain. Alternatively, virtual fence (VF) systems offer flexibility and real-time control of livestock location. Pre-commercial neckbands (eShepherd®, Agersens, Melbourne, VIC) emit a warning audio tone (AT) when a cow approaches a VF boundary, paired with an electrical pulse (EP) if the cow continues forward into the exclusion zone (EZ). However, the ability of VF technology to control animal location when pasture is restricted to the previous day's residual, remains unknown. Ten non-lactating Holstein-Friesian dairy cows were trained to use a VF system for 6 days before strip grazing a 1.2 ha paddock of annual ryegrass. Over 10 days the cows grazed eight pasture allocations at a pre-grazing pasture mass of 2,324 ± 81 kg DM/ha (mean ± SE) and post-grazing pasture-mass (post-grazing residual) of 1,649 ± 48 kg/DM/ha with a front VF. The allocations had a physical backing fence that included the fresh allocation and a small area of residual to cater for any GPS drift of the front VF. On each day, with the exception of days 5 and 10, the VF was moved forward, and the cows were provided a new pasture allocation. On days 5 and 10, the VF was not shifted, and cows were only offered the previous allocation's residual pasture. The location of each animal (inclusion, buffer, and exclusion zones) and number of stimuli (AT and EP) delivered were recorded. The number of stimuli delivered between the grazing and hold-off days was similar. Cows spent 89% of time within the inclusion zone (IZ), with significant peaks observed on day 5 and 10. Distance that cows traveled into the EZ reduced across time. There was also evidence of individual variation in the number of stimuli and thus time spent in each zone. Overall, the VF system was successful in containing the dairy cows during strip grazing even when only offered the previous days post-grazing residual.
Dairy cattle are offered varying amounts of feed which they deplete through time. A reduction in the amount of feed allocated to cows may impact on their containment using a virtual fence (VF). Pre-commercial neckbands (eShepherd®, Agersens, Melbourne, VIC) deliver an audio tone (AT) to the individual cow when it reaches the VF, and this is followed by an electrical pulse (EP) if they continue forward movement. No further stimuli are delivered if the cow stops or turns around. Thirty-four non-lactating dairy cows were used across three blocks in a controlled field experiment evaluating the impact of feed restriction on the exclusion of cows from a lucerne cube feed source using a VF. Within each block cows were pre-trained to the VF system for 6-days on pasture before being fed either a (1) Restricted (R, 12 ± 0.3 kg) or (2) Above maintenance (+M, 20 kg) lucerne cube ration each day. The treatment groups were then tested for four 30 min tests (T1–T4) in test paddocks of 100 × 20 m. For testing, a VF was set at 30 m from the paddock entry and 2 kg per cow of lucerne cube feed was placed at 90 m. Only R cows crossed the VF to access the feed, thereby receiving more AT and EP stimuli in T1 and T2 as compared to +M cows (P ≤ 0.03). However, there was no difference between treatments in T3 and T4 as cows learned the test routine and to remain within the VF in the paddock context. These results suggest that feed restriction may impact the exclusion of dairy cows from feed using a VF, but this effect is limited, and cows can learn to remain within a VF even when fed a restricted ration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.