Theory predicts that sexual reproduction promotes disease invasion by increasing the evolutionary potential of the parasite, whereas asexual reproduction tends to enhance establishment success and population growth rate. Gyrodactylid monogeneans are ubiquitous ectoparasites of teleost fish, and the evolutionary success of the specious Gyrodactylus genus is thought to be partly due to their use of various modes of reproduction. Gyrodactylus turnbulli is a natural parasite of the guppy (Poecilia reticulata), a small, tropical fish used as a model for behavioural, ecological and evolutionary studies. Using experimental infections and a recently developed microsatellite marker, we conclusively show that monogenean parasites reproduce sexually. Conservatively, we estimate that sexual recombination occurs and that between 3.7–10.9% of the parasites in our experimental crosses are hybrid genotypes with ancestors from different laboratory strains of G. turnbulli. We also provide evidence of hybrid vigour and/or inter-strain competition, which appeared to lead to a higher maximum parasite load in mixed infections. Finally, we demonstrate inbreeding avoidance for the first time in platyhelminths which may influence the distribution of parasites within a host and their subsequent exposure to the host's localized immune response. Combined reproductive modes and inbreeding avoidance may explain the extreme evolutionary diversification success of parasites such as Gyrodactylus, where host-parasite coevolution is punctuated by relatively frequent host switching.
The South American tern Sterna hirundinacea is a migratory species for which dispersal, site fidelity and migratory routes are largely unknown. Here, we used five microsatellite loci and 799 bp partial mitochondrial DNA sequences (Cytochrome b and ND2) to investigate the genetic structure of South American terns from the South Atlantic Ocean (Brazilian and Patagonian colonies). Brazilian and Patagonian colonies have two distinct breeding phenologies (austral winter and austral summer, respectively) and are under the influence of different oceanographic features (e.g. Brazil and Falklands/Malvinas ocean currents, respectively), that may promote genetic isolation between populations. Results show that the Atlantic populations are not completely panmictic, nevertheless, contrary to our expectations, low levels of genetic structure were detected between Brazilian and Patagonian colonies. Such low differentiation (despite temporal isolation of the colonies) could be explained by demographic history of these populations coupled with ongoing levels of gene flow. Interestingly, estimations of gene flow through Maximum likelihood and Bayesian approaches has indicated asymmetrical long term and contemporary gene flow from Brazilian to Patagonian colonies, approaching a source–sink metapopulation dynamic. Genetic analysis of other South American tern populations (especially those from the Pacific coast and Falklands–Malvinas Islands) and other seabird species showing similar geographical distribution (e.g. royal tern Thalasseus maximus), are fundamental in gaining a better understanding of the main processes involved in the diversification of seabirds in the southern hemisphere.
Cryptic species complexes are common among parasites, which tend to have large populations and are subject to rapid evolution. Such complexes may arise through host-parasite co-evolution and/or host switching. For parasites that reproduce directly on their host, there might be increased opportunities for sympatric speciation, either by exploiting different hosts or different micro-habitats within the same host. The genus Gyrodactylus is a specious group of viviparous monogeneans. These ectoparasites transfer between teleosts during social contact and cause significant host mortality. Their impact on the guppy (Poecilia reticulata), an iconic evolutionary and ecological model species, is well established and yet the population genetics and phylogenetics of these parasites remains understudied. Using mtDNA sequencing of the host and its parasites, we provide evidence of cryptic speciation in Gyrodactylus bullatarudis, G. poeciliae and G. turnbulli. For the COII gene, genetic divergence of lineages within each parasite species ranged between 5.7 and 17.2%, which is typical of the divergence observed between described species in this genus. Different lineages of G. turnbulli and G. poeciliae appear geographically isolated, which could imply allopatric speciation. In addition, for G. poeciliae, co-evolution with a different host species cannot be discarded due to its host range. This parasite was originally described on P. caucana, but for the first time here it is also recorded on the guppy. The two cryptic lineages of G. bullatarudis showed considerable geographic overlap. G. bullatarudis has a known wide host range and it can also utilize a killifish (Anablepsoides hartii) as a temporary host. This killifish is capable of migrating overland and it could act as a transmission vector between otherwise isolated populations. Additional genetic markers are needed to confirm the presence of these cryptic Gyrodactylus species complexes, potentially leading to more in-depth genetic, ecological and evolutionary analyses on this multi-host-parasite system.
The mountain bongo antelope Tragelaphus eurycerus isaaci has rapidly declined in recent decades, due to a combination of hunting, habitat degradation and disease. Endemic to Kenya, mountain bongo populations have shrunk to approximately 100 individuals now mainly confined to the Aberdares mountain ranges. Indirect observation of bongo signs (e.g. tracks, dung) can be misleading, thus methods to ensure reliable species identification, such as DNA-based techniques, are necessary to effectively study and monitor this species. We assessed bongo presence in four mountain habitats in Kenya (Mount Kenya National Park, Aberdare National Park, Eburu and Mau forests) and carried out a preliminary analysis of genetic variation by examining 466 bp of the first domain of the mtDNA control region using DNA extracted from faecal samples. Of the 201 dung samples collected in the field, 102 samples were molecularly identified as bongo, 97 as waterbuck, one as African buffalo and one as Aders' duiker. Overall species-identification accuracy by experienced trackers was 64%, with very high error of commission when identifying bongo sign (37%), and high error of omission for waterbuck sign (82%), suggesting that the two species' signs are easily confused. Despite high variation in the mtDNA control region in most antelope species, our results suggest low genetic variation in mountain bongo as only two haplotypes were detected in 102 samples analyzed. In contrast, the analysis of 63 waterbuck samples from the same sites revealed 21 haplotypes. Nevertheless, further examination using nuclear DNA markers (e.g. microsatellites) in a multi-locus approach is still required, especially because the use of mitochondrial DNA can result in population overestimation as distinct dung samples can potentially be originated from the same individual.
The Hyacinth Macaw (Anodorhynchus hyacinthinus) is one of 14 endangered species in the family Psittacidae occurring in Brazil, with an estimated total population of 6,500 specimens. We used nuclear molecular markers (single locus minisatellites and microsatellites) and 472 bp of the mitochondrial DNA control region to characterize levels of genetic variability in this species and to assess the degree of gene flow among three nesting sites in Brazil (Pantanal do Abobral, Pantanal de Miranda and Piauí). The origin of five apprehended specimens was also investigated. The results suggest that, in comparison to other species of parrots, Hyacinth Macaws possess relatively lower genetic variation and that individuals from two different localities within the Pantanal (Abobral and Miranda) belong to a unique interbreeding population and are genetically distinct at nuclear level from birds from the state of Piauí. The analyses of the five apprehended birds suggest that the Pantanal is not the source of birds for illegal trade, but their precise origin could not be assigned. The low genetic variability detected in the Hyacinth Macaw does not seem to pose a threat to the survival of this species. Nevertheless, habitat destruction and nest poaching are the most important factors negatively affecting their populations in the wild. The observed genetic structure emphasizes the need of protection of Hyacinth Macaws from different regions in order to maintain the genetic diversity of this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.