The goal of this study was to identify inbred rat strains that could serve as useful models for exploration of the genetic basis of aerobic endurance performance. Six rats of each gender from 11 different inbred strains were tested for 1) maximal running capacity on a treadmill and 2) isolated cardiac performance. Running performance was estimated from 1) duration of the run, 2) distance run, and 3) vertical work performed. Cardiac output, during constant preload and afterload, was taken as a measure of cardiac performance from an isolated working heart preparation. The COP rats were the lowest performers and the DA rats were the best performers by all estimates of running performance. Across the 11 strains, the distance run correlated positively with isolated cardiac performance (r = 0.87). Estimates of performance were as follows (COP vs. DA strain, respectively): duration of run, 19.9 +/- 1.8 vs. 41.5 +/- 2. 2 min; distance run, 298 +/- 30 vs. 840 +/- 64 m; vertical work, 15 +/- 1.7 vs. 40 +/- 4.4 kg/m. These approximately 2.5-fold differences in running performance between the COP and DA suggest that these strains could serve as models for evaluation of the genetic basis of variance in aerobic performance.
Treadmill running was evaluated as a phenotype for selective breeding for high- and low-endurance performance from a starting population of 18 male and 24 female outbred Sprague-Dawley rats. Each rat was exercised to exhaustion once per day for 5 consecutive days. The treadmill was set at a constant 15° slope, and the initial velocity of 10 m/min was increased by 1 m/min every 2 min. The total distance run on the single best day out of the five trials was taken as the measure of endurance performance. The original population (males and females combined, n = 42) ran on average for 396 m. The two lowest-performing pairs and two highest-performing pairs were selectively bred through three successive generations. After three generations of selection, performance of the offspring from the high selected line averaged 659 ± 36 m ( n = 20), whereas low-performance offspring ( n = 13) averaged 388 ± 28 m. The narrow-sense heritability, calculated as the regression of individual offspring performance on midparental value for each family, was 0.39 across the three generations. This implies that 39% of the variation in running endurance performance between the low and high selected lines was determined by heritable factors.
Rat genetic models of intrinsic (i.e., untrained) low-capacity runners (LCR) and high-capacity runners (HCR) are being developed by artificial selective breeding for treadmill running. At generation 3, these lines differed in running capacity by 114%. We used generation 3 rats to test the hypotheses that HCR, relative to LCR, have 1) greater isolated cardiac performance and 2) more resistance to myocardial ischemic insult. The LCR ran for 227 +/- 7 m, and the HCR ran 994 +/- 11 m at exhaustion (337% difference, P < 0.001). Isolated heart performance was assessed from cardiac output (CO) generated at constant preload (15 mmHg) and afterload (70 mmHg) using a Langendorff-Neely working heart preparation. CO averaged 33.5 +/- 2.0 ml. min(-1). g(-1) in LCR hearts and 49.9 +/- 1.4 ml. min(-1). g(-1) in HCR hearts (49% difference, P < 0.001). Recovery of CO after 25 min of global ischemia was not different between the lines. These results suggest that 1) increased cardiac performance accounts for part of the difference in running capacity between the lines; and 2) unlike exercise training, genetically determined intrinsic capacity for exercise does not influence the recovery from 25 min of global low-flow cardiac ischemia.
Experiments were performed in seven conscious dogs to evaluate the contribution of total systemic autoregulation to the increase in mean arterial pressure (MAP) produced by the intravenous administration of pressor agents. Each dog was instrumented for the measurement of aortic pressure, central venous pressure, and cardiac output, and all dogs received hexamethonium to block autonomic ganglionic transmission. Angiotensin II (ANG II), arginine vasopressin (AVP), or norepinephrine (NE) were titrated over a 15- to 20-min period until MAP was increased to a new steady-state value approximately 50-55% above the normotensive control. Then while a constant infusion of the pressor agents was maintained, MAP was controlled via a gravity reservoir for 15-min periods at either the hypertensive value or at the animal's normotensive value. With all three pressor agents, total peripheral resistance (TPR) was greater when MAP was controlled at the hypertensive value than when the vasculature was protected from the elevated pressure by controlling MAP at the normotensive value. Thus a portion of the increase in TPR during the infusion of ANG II, AVP, or NE was due to autoregulatory-mediated vasoconstriction elicited by the increase in MAP. The fractions of the increases in TPR and MAP contributed by primary vasoconstriction vs. autoregulation were determined from the pressure-flow relationships. The pressure-induced increases in TPR accounted for 74% of the total increase in MAP produced by AVP, 62% of the pressor response to NE, and 34% of the response to ANG II. These results demonstrate that the direct vasoconstrictor effects of pressor agents can be significantly amplified by secondary autoregulatory responses.
The major enzyme responsible for adenosine production during myocardial hypoxia or ischemia is 5'-nucleotidase. We purified an AMP-specific 5'-nucleotidase to homogeneity from the 150,000-g supernatant of dog heart homogenate using phosphocellulose, DEAE-cellulose, and ADP-agarose affinity chromatography. Sodium dodecyl sulfate-poly-acrylamide gel electrophoresis of the purified enzyme yielded a single protein band of 43 kDa. The molecular mass of the holoenzyme, determined by gel filtration and sucrose density-gradient centrifugation, was approximately 166 kDa, suggesting a tetrameric structure. Dog heart cytosolic 5'-nucleotidase was active at physiological pH (6.8-7.8) and demonstrated a preference for AMP over IMP as substrate. The enzyme exhibited sigmoidal saturation kinetics, with half-maximal activity at 2.6 mM AMP in the absence of ADP. ADP (0-250 microM) activated cytosolic 5'-nucleotidase by increasing maximal velocity and affinity for AMP. The enzyme was inhibited by 4 mM ATP, but 5'-nucleotidase activity increased as [ATP] was reduced. Mg2+ was required for activity, with maximal activation at approximately 3.5 mM free Mg2+. These data suggest that the regulation of AMP-specific cytosolic 5'-nucleotidase by adenine nucleotides and free Mg2+ may be important in the production of adenosine during conditions promoting ATP hydrolysis, such as myocardial hypoxia or ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.