Visuo-perceptual processing in autism is characterized by intact or enhanced performance on static spatial tasks and inferior performance on dynamic tasks, suggesting a deficit of dorsal visual stream processing in autism. However, previous findings by Bertone et al. indicate that neuro-integrative mechanisms used to detect complex motion, rather than motion perception per se, may be impaired in autism. We present here the first demonstration of concurrent enhanced and decreased performance in autism on the same visuo-spatial static task, wherein the only factor dichotomizing performance was the neural complexity required to discriminate grating orientation. The ability of persons with autism was found to be superior for identifying the orientation of simple, luminance-defined (or first-order) gratings but inferior for complex, texture-defined (or second-order) gratings. Using a flicker contrast sensitivity task, we demonstrated that this finding is probably not due to abnormal information processing at a sub-cortical level (magnocellular and parvocellular functioning). Together, these findings are interpreted as a clear indication of altered low-level perceptual information processing in autism, and confirm that the deficits and assets observed in autistic visual perception are contingent on the complexity of the neural network required to process a given type of visual stimulus. We suggest that atypical neural connectivity, resulting in enhanced lateral inhibition, may account for both enhanced and decreased low-level information processing in autism.
We present the first assessment of motion sensitivity for persons with autism and normal intelligence using motion patterns that require neural processing mechanisms of varying complexity. Compared to matched controls, our results demonstrate that the motion sensitivity of observers with autism is similar to that of nonautistic observers for different types of first-order (luminance-defined) motion stimuli, but significantly decreased for the same types of second-order (texture-defined) stimuli. The latter class of motion stimuli has been demonstrated to require additional neural computation to be processed adequately. This finding may reflect less efficient integrative functioning of the neural mechanisms that mediate visuoperceptual processing in autism. The contribution of this finding with regards to abnormal perceptual integration in autism, its effect on cognitive operations, and possible behavioral implications are discussed.
The cognitive profile and measured intellectual level vary according to assessment tools in children on the autism spectrum, much more so than in typically developing children. The recent inclusion of intellectual functioning in the diagnostic process for autism spectrum disorders leads to the crucial question on how to assess intelligence in autism, especially as some tests and subtests seem more sensitive to certain neurodevelopmental conditions. Our first aim was to examine the cognitive profile on the current version of the most widely used test, the Wechsler Intelligence Scales for Children (WISC-IV), for a homogenous subgroup of children on the autism spectrum, i.e. corresponding to DSM-IV diagnosis of “autism”. The second aim was to compare cognitive profiles obtained on the third edition versus 4th edition of WISC, in order to verify whether the WISC-IV yields a more distinctive cognitive profile in autistic children. The third aim was to examine the impact of the WISC-IV on the cognitive profile of another subgroup, children with Asperger’s Syndrome. 51 autistic, 15 Asperger and 42 typically developing children completed the WISC-IV and were individually matched to children who completed the WISC-III. Divergent WISC-IV profiles were observed despite no significant intelligence quotient difference between groups. Autistic children scored significantly higher on the Perceptual Reasoning Index than on the Verbal Comprehension Index, a discrepancy that nearly tripled in comparison to WISC-III results. Asperger children scored higher on the VCI than on other indexes, with the lowest score found on the Processing Speed Index. WISC-IV cognitive profiles were consistent with, but more pronounced than WISC-III profiles. Cognitive profiles are a valuable diagnostic tool for differential diagnosis, keeping in mind that children on the autism spectrum might be more sensitive to the choice of subtests used to assess intelligence.
Outstanding skills, including special isolated skills (SIS) and perceptual peaks (PP) are frequent features of autism. However, their reported prevalence varies between studies and their co-occurrence is unknown. We determined the prevalence of SIS in a large group of 254 autistic individuals and searched for PP in 46 of these autistic individuals and 46 intelligence and age-matched typically developing controls. The prevalence of SIS among autistic individuals was 62.5 % and that of PP was 58 % (13 % in controls). The prevalence of SIS increased with intelligence and age. The existence of an SIS in a particular modality was not associated with the presence of a PP in the same modality. This suggests that talents involve an experience-dependent component in addition to genetically defined alterations of perceptual encoding.Electronic supplementary materialThe online version of this article (doi:10.1007/s10803-014-2296-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.