The mechanism by which chloride increases sarcoplasmic reticulum (SR) Ca2+ permeability was investigated. In the presence of 3 microM Ca2+, Ca2+ release from 45Ca(2+)-loaded SR vesicles prepared from procine skeletal muscle was increased approximately 4-fold when the media contained 150 mM chloride versus 150 mM propionate, whereas in the presence of 30 nM Ca2+, Ca2+ release was similar in the chloride- and the propionate-containing media. Ca(2+)-activated [3H]ryanodine binding to skeletal muscle SR was also increased (2- to 10-fold) in media in which propionate or other organic anions were replaced with chloride; however, chloride had little or no effect on cardiac muscle SR 45Ca2+ release or [3H]ryanodine binding. Ca(2+)-activated [3H]ryanodine binding was increased approximately 4.5-fold after reconstitution of skeletal muscle RYR protein into liposomes, and [3H]ryanodine binding to reconstituted RYR protein was similar in chloride- and propionate-containing media, suggesting that the sensitivity of the RYR protein to changes in the anionic composition of the media may be diminished upon reconstitution. Together, our results demonstrate a close correlation between chloride-dependent increases in SR Ca2+ permeability and increased Ca2+ activation of skeletal muscle RYR channels. We postulate that media containing supraphysiological concentrations of chloride or other inorganic anions may enhance skeletal muscle RYR activity by favoring a conformational state of the channel that exhibits increased activation by Ca2+ in comparison to the Ca2+ activation exhibited by this channel in native membranes in the presence of physiological chloride (< or = 10 mM). Transitions to this putative Ca(2+)-activatable state may thus provide a mechanism for controlling the activation of RYR channels in skeletal muscle.
Inorganic phosphate (P(i)) accumulates in the fibers of actively working muscle where it acts at various sites to modulate contraction. To characterize the role of P(i) as a regulator of the sarcoplasmic reticulum (SR) calcium (Ca(2+)) release channel, we examined the action of P(i) on purified SR Ca(2+) release channels, isolated SR vesicles, and skinned skeletal muscle fibers. In single channel studies, addition of P(i) to the cis chamber increased single channel open probability (P(o); 0.079 +/- 0.020 in 0 P(i), 0. 157 +/- 0.034 in 20 mM P(i)) by decreasing mean channel closed time; mean channel open times were unaffected. In contrast, the ATP analog, beta,gamma-methyleneadenosine 5'-triphosphate (AMP-PCP), enhanced P(o) by increasing single channel open time and decreasing channel closed time. P(i) stimulation of [(3)H]ryanodine binding by SR vesicles was similar at all concentrations of AMP-PCP, suggesting P(i) and adenine nucleotides act via independent sites. In skinned muscle fibers, 40 mM P(i) enhanced Ca(2+)-induced Ca(2+) release, suggesting an in situ stimulation of the release channel by high concentrations of P(i). Our results support the hypothesis that P(i) may be an important endogenous modulator of the skeletal muscle SR Ca(2+) release channel under fatiguing conditions in vivo, acting via a mechanism distinct from adenine nucleotides.
To isolate a more native, platelet-interactive macromolecule (class II antigen) of Streptococcus sanguis, cultured protoplasts were used as a source. Protoplasts were optimally prepared from fresh washed cells by digestion with 80 U of mutanolysin per ml for 75 min at 37°C while osmotically stabilized in 26% (wt/vol) raffinose. Osmotically stabilized forms were surrounded by a 9-nm bilaminar membrane, as shown by transmission electron microscopy. Protoplasts were cultured in chemically defined synthetic medium and osmotically stabilized by ammonium chloride. Spent culture media were harvested daily for 7 days. Each day, soluble proteins were isolated from media, preincubated with platelet-rich plasma, and tested for inhibition of platelet aggregation induced by S. sanguis cells. Products released from S. sanguis protoplasts and reactive with an anti-class II antigen immunoaffinity matrix were able to inhibit S. sanguis-induced platelet aggregation. As resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, anti-class II-reactive protoplast products included silver-stained bands of 67, 79, 115, 216, and 248 kDa. The 115-kDa protein fraction was isolated by gel filtration and ion-exchange chromatography. This form of the class II antigen contained N-formylmethionine at its amino terminus. Rhamnose constituted 18.2% of the total residual dry weight and nearly half of its carbohydrate content. Diester phosphorus constituted 1% of this fraction. After trypsinization of the protoplast products from either preparation, a 65-kDa protein fragment was recovered. This protoplast protein fragment and the S. sanguis cell-derived 65-kDa class II antigen, previously implicated in the induction of platelet aggregation, were shown to be functionally and immunologically identical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.