Abstract. Halloysites/polypropylene nanocomposites with different nanotubes contents were prepared by diluting a masterbatch containing 30 wt.% halloysites with polypropylene (PP). Unmodified (HNTs) and quaternary ammonium salt treated (QM-HNTs) halloysite nanotubes were used. Both degree of crystallinity and crystallization temperature increase upon addition of halloysites into PP, thus indicating a potential nucleation effect induced by the nanotubes. An homogeneous distribution and dispersion of nanotubes was observed throughout the PP matrix, with a slightly better dispersion in the case of modified QM-HNTs compared to unmodified HNTs. Mechanical tests in tension, bending and notched impact demonstrated that strength and modulus of the nanocomposites significantly increase with addition of halloysites without significant loss of ductility. An halloysite content of 6 wt.% appears as an optimum. Modified halloysites (QM-HNTs) lead to globally better performances due to strong interfacial interaction between the polymer matrix and the nanotubes.
Abstract. Multi-wall carbon nanotubes (MWNTs) filled polypropylene (PP) nanocomposites were prepared through diluting a PP/MWNT masterbatch in a PP matrix by melt compounding with a twin screw extruder. Polypropylene grafted maleic anhydride (PP-g-MA) was used to promote the carbon nanotubes dispersion. The effect of PP-g-MA addition on the rheological, mechanical and morphological properties of the nanocomposites was assessed for different MWNTs loadings. Scanning electron microscopy (SEM) has shown that nanotubes are distributed reasonably uniformly. A better dispersion and good adhesion between the nanotubes and the PP matrix is caused by wrapping of PP-g-MA on MWNTs. When PP-g-MA is added, dynamic moduli and viscosity further increases compared to PP/MWNT nanocomposites. The rheological percolation threshold drops significantly. Tensile and flexural moduli and Charpy impact resistance of the nanocomposites also increases by the addition of PP-g-MA. The present study confirms that PP-g-MA is efficient to promote the dispersion of MWNTs in PP matrix and serves as an adhesive to increase their interfacial strength, hence greatly improving the rheological percolation threshold and mechanical properties of PP/MWNT nanocomposites.
This paper aims to identify the main parameters that improve the flexural properties of long glass fiber/polyamide 66 injection moulded parts. The mould geometry has been chosen so as to reproduce some geometrical accidents (e.g. sharp frontal and tangential steps) occurring on industrial moulds. A Taguchi design of experiments (DOE) has been used in order to quantify the effects of processing conditions on the flexural strength and modulus. Polymer melt temperature is the main parameter acting on the flexural properties, in both flow and transverse directions. The structure/process/flexural properties relationship has then been deduced from microstructure analysis (crystallinity, local residual fiber length and average orientation, interfacial quality). For optimized injection moulding conditions, leading to the highest flexural strength Correspondence
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.