Despite high conservation of the Notch pathway, its repression appears diverse between organisms. In Drosophila, a high-affinity complex forms between the CSL orthologue Su(H) and Hairless, which is analyzed in great detail in vitro and in vivo. Drosophila Hairless is shown to bind CBF1 and inhibit Notch transcriptional output in mammalian cells.
The Notch signalling pathway mediates cell-cell communication in a wide variety of organisms. The major components, as well as the basic mechanisms of Notch signal transduction, are remarkably well conserved amongst vertebrates and invertebrates. Notch signalling results in transcriptional activation of Notch target genes, which is mediated by an activator complex composed of the DNA binding protein CSL, the intracellular domain of the Notch receptor, and the transcriptional coactivator Mastermind. In the absence of active signalling, CSL represses transcription from Notch target genes by the recruitment of corepressors. The Notch activator complex is extremely well conserved and has been studied in great detail. However, Notch repressor complexes are far less understood. In Drosophila melanogaster, the CSL protein is termed Suppressor of Hairless [Su(H)]. Su(H) functions as a transcriptional repressor by binding Hairless, the major antagonist of Notch signalling in Drosophila, which in turn recruits two general corepressors – Groucho and C-terminal binding protein CtBP. Recently, we determined that the C-terminal domain (CTD) of Su(H) binds Hairless and identified a single site in Hairless, which is essential for contacting Su(H). Here we present additional biochemical and in vivo studies aimed at mapping the residues in Su(H) that contact Hairless. Focusing on surface exposed residues in the CTD, we identified two sites that affect Hairless binding in biochemical assays. Mutation of these sites neither affects binding to DNA nor to Notch. Subsequently, these Su(H) mutants were found to function normally in cellular and in vivo assays using transgenic flies. However, these experiments rely on Su(H) overexpression, which does not allow for detection of quantitative or subtle differences in activity. We discuss the implications of our results.
Platelet-derived growth factors (PDGF) and their receptors control cell proliferation, survival, and migration. To test the influence of an oncogenic mutation to embryonic development, a transgenic mouse line expressing PDGFR␣ (D842V) was established and analyzed. Most of the embryos die on embryonic day 12.5 due to massive hemorrhages in the trunk. In mesenchymal cells of mutant animals, proliferation is decreased while apoptosis is increased. Further analyses reveal that the aortic blood vessels are enlarged showing a reduced numbers of vascular smooth muscle cells (vSMC) around the aorta. We hypothesize that the process of aortic wall formation is impaired, leading to subsequent rupture and leakage of the blood vessel resulting in death of the embryos. We speculate that misexpression of PDGFR␣ in SMCs causes failure of vSMC recruitment to the aorta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.