No immunogen to date has reliably elicited broadly neutralizing antibodies (bnAbs) to HIV in humans or animal models. Advances in the design of immunogens (BG505 SOSIP) that antigenically mimic the HIV envelope glycoprotein (Env)1 have improved the elicitation of potent isolate-specific Ab responses in rabbits2 and macaques3, but so far failed to induce bnAbs. One possible contributor to this failure is that the relevant antibody repertoires are poorly suited to target somewhat occluded conserved epitope regions on Env relative to exposed variable epitopes. To test this hypothesis, we immunized four cows with BG505 SOSIP. The antibody repertoire of cows contains long third heavy chain complementary determining regions (HCDR3) with an ultralong subset that can reach over 70 amino acids in length4–9. Remarkably, BG505 SOSIP immunization resulted in rapid elicitation of broad and potent serum antibody responses in all four cows. Longitudinal serum analysis for one cow showed the development of neutralization breadth (20%, n = 117 cross-clade isolates) in 42 days and 96% breadth (n = 117) at 381 days. A monoclonal antibody (mAb) isolated from this cow harbored an ultralong HCDR3 of 60 amino acids and neutralized 72% of cross-clade isolates (n = 117) with a potent median IC50 of 0.028 μg/ml. We note that breadth was elicited with a single trimer immunogen and did not require additional envelope diversity. Immunization of cows may provide an avenue to rapidly generate antibody prophylactics and therapeutics to address disease agents that have evolved to avoid human antibody responses.
The antibody repertoire of Bos taurus is characterized by a subset of variable heavy (VH) chain regions with ultralong third complementarity determining regions (CDR3) which, compared to other species, can provide a potent response to challenging antigens like HIV env. These unusual CDR3 can range to over seventy highly diverse amino acids in length and form unique β-ribbon 'stalk' and disulfide bonded 'knob' structures, far from the typical antigen binding site. The genetic components and processes for forming these unusual cattle antibody VH CDR3 are not well understood. Here we analyze sequences of Bos taurus antibody VH domains and find that the subset with ultralong CDR3 exclusively uses a single variable gene, IGHV1-7 (VHBUL) rearranged to the longest diversity gene, IGHD8-2. An eight nucleotide duplication at the 3' end of IGHV1-7 encodes a longer V-region producing an extended F β-strand that contributes to the stalk in a rearranged CDR3. A low amino acid variability was observed in CDR1 and CDR2, suggesting that antigen binding for this subset most likely only depends on the CDR3. Importantly a novel, potentially AID mediated, deletional diversification mechanism of the B. taurus VH ultralong CDR3 knob was discovered, in which interior codons of the IGHD8-2 region are removed while maintaining integral structural components of the knob and descending strand of the stalk in place. These deletions serve to further diversify cysteine positions, and thus disulfide bonded loops. Hence, both germline and somatic genetic factors and processes appear to be involved in diversification of this structurally unusual cattle VH ultralong CDR3 repertoire.Cellular and Molecular Immunology advance online publication, 4 December 2017; doi:10.1038/cmi.2017.117.
We present a new transcriptome assembly of the Pacific whiteleg shrimp (Litopenaeus vannamei), the species most farmed for human consumption. Its functional annotation, a substantial improvement over previous ones, is provided freely. RNA-Seq with Illumina HiSeq technology was used to analyze samples extracted from shrimp abdominal muscle, hepatopancreas, gills and pleopods. We used the Trinity and Trinotate software suites for transcriptome assembly and annotation, respectively. The quality of this assembly and the affiliated targeted homology searches greatly enrich the curated transcripts currently available in public databases for this species. Comparison with the model arthropod Daphnia allows some insights into defining characteristics of decapod crustaceans. This large-scale gene discovery gives the broadest depth yet to the annotated transcriptome of this important species and should be of value to ongoing genomics and immunogenetic resistance studies in this shrimp of paramount global economic importance.
IntroductionQuantum dots (QDs) are crystalline semiconductors approximately 1-20 nm in diameter. QD nanocrystals composed of CdSe cores and ZnS shells have received attention due to their unique electronic and optoelectronic properties at nanoscale levels and their widespread applications (1-8). Because of their unique characteristics, QDs are used at increasing rates for a wide variety of industrial and consumer-based applications, including biomedical imaging agents, inks, and solar panels (5,9-11). QDs may also pose risks to human health, where unintended exposure to nanomaterials may occur at the workplace or during end product use via inhalation, dermal absorption, or gastrointestinal tract absorption (12). Dermal exposures to QD particles have shown toxicities due to heavy metal exposure and/or the production of reactive oxygen intermediates (ROIs) (13)(14)(15) .Due to the growing number of potential uses that are offered by QD materials, consumer handling and manufacturer exposure to QDs is likely to increase. Nanoscale materials are thought to impose increased adverse effects on organisms than microscale materials because of their finer sizes and corresponding larger specific surface areas per unit mass (16)(17)(18). However, it is largely unknown which specific pathways or subcellular mechanisms of action are triggered as a result of QD exposure. Many investigators have shown that QDs can be internalized into cells and others have speculated the route of entry for particular , but what are the mechanisms of injury and key participants on the molecular level in the cell and how do those processes develop? We hypothesized that immune mediators of inflammation may be initiated in the exposed cell layers.In an attempt to fill this gap, human epithelial keratinocytes (HEK), found in the epidermis, and human dermal fibroblasts (HDF), located in the dermis, were utilized to query the © 2011 Elsevier Ltd. All rights reserved. § Corresponding author: Christie Sayes (csayes@cvm.tamu.edu). Secondary corresponding author: Michael Criscitiello (mcriscitiello@cvm.tamu.edu), AAR: aromoser@cvm.tamu.edu, PLC: pchen@cvm.tamu.edu, JMB: mberg@cvm.tamu.edu, CS: cseabury@cvm.tamu.edu, II: iivanov@cvm.tamu.edu, MFC: mcriscitiello@cvm.tamu.edu, CMS: csayes@cvm.tamu.edu . Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public Access Author ManuscriptMol Immunol. Author manuscript; available in PMC 2012 July 1. The human dermal fibroblast cell line was of interest partially due to its proximity to the vascular system and its importance in maintaining the structural framework of the ti...
In testing the hypothesis that all jawed vertebrate classes employ immunoglobulin heavy chain V (IgHV) gene segments in their T cell receptor (TCR)δ encoding loci, we found that some basic characterization was required of zebrafish TCRδ. We began by annotating and characterizing the TCRα/δ locus of Danio rerio based on the most recent genome assembly, GRCz10. We identified a total of 141 theoretically functional V segments which we grouped into 41 families based upon 70 % nucleotide identity. This number represents the second greatest count of apparently functional V genes thus far described in an antigen receptor locus with the exception of cattle TCRα/δ. Cloning, relative quantitative PCR, and deep sequencing results corroborate that zebrafish do express TCRδ, but these data suggest only at extremely low levels and in limited diversity in the spleens of the adult fish. While we found no evidence for IgH-TCRδ rearrangements in this fish, by determining the locus organization we were able to suggest how the evolution of the teleost α/δ locus could have lost IgHVs that exist in sharks and frogs. We also found evidence of surprisingly low TCRδ expression and repertoire diversity in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.