Summary
Persistent activation of Stat3 is oncogenic and is prevalent in a wide variety of human cancers. Chronic cytokine stimulation is associated with Stat3 activation in some tumors, implicating cytokine receptor-associated Jak family kinases. Using Jak2 inhibitors, we demonstrate a central role of Jaks in modulating basal and cytokine-induced Stat3 activation in human solid tumor cell lines. Inhibition of Jak2 activity is associated with abrogation of Stat3 nuclear translocation and tumorigenesis. The Jak2 inhibitor, AZD1480, suppresses the growth of human solid tumor xenografts harboring persistent Stat3 activity. We demonstrate the essential role of Stat3 downstream of Jaks by inhibition of tumor growth using shRNA targeting Stat3. Our data support a key role of Jak kinase activity in Stat3-dependent tumorigenesis.
In vertebrates, many cytokines and growth factors have been identified as activators of the JAK/STAT signaling pathway. In Drosophila, JAK and STAT molecules have been isolated, but no ligands or receptors capable of activating the pathway have been described. We have characterized the unpaired (upd) gene, which displays the same distinctive embryonic mutant defects as mutations in the Drosophila JAK (hopscotch) and STAT (stat92E) genes. Upd is a secreted protein, associated with the extracellular matrix, that activates the JAK pathway. We propose that Upd is a ligand that relies on JAK signaling to stimulate transcription of pair-rule genes in a segmentally restricted manner in the early Drosophila embryo.
The A v B 6 integrin is up-regulated on epithelial malignancies and has been implicated in various aspects of cancer progression. Immunohistochemical analysis of A v B 6 expression in 10 human tumor types showed increased expression relative to normal tissues. Squamous carcinomas of the cervix, skin, esophagus, and head and neck exhibited the highest frequency of expression, with positive immunostaining in 92% (n = 46), 84% (n = 49), 68% (n = 56), and 64% (n = 100) of cases, respectively. We studied the role of A v B 6 in Detroit 562 human pharyngeal carcinoma cells in vitro and in vivo. Prominent A v B 6 expression was detected on tumor xenografts at the tumor-stroma interface resembling the expression on human head and neck carcinomas. Nonetheless, coculturing cells in vitro with matrix proteins did not up-regulate A v B 6 expression. Detroit 562 cells showed A v B 6 -dependent adhesion and activation of transforming growth factor-B (TGF-B) that was inhibited >90% with an A v B 6 blocking antibody, 6.3G9. Although both recombinant soluble TGF-B receptor type-II (rsTGF-BRII-Fc) and 6.3G9 inhibited TGF-B-mediated Smad2/ 3 phosphorylation in vitro, there was no effect on proliferation. Conversely, in vivo, 6.3G9 and rsTGF-BRII-Fc inhibited xenograft tumor growth by 50% (n = 10, P < 0.05) and >90% (n = 10, P < 0.001), respectively, suggesting a role for the microenvironment in this response. However, stromal collagen and smooth muscle actin content in xenograft sections were unchanged with treatments. Although further studies are required to consolidate in vitro and in vivo results and define the mechanisms of tumor inhibition by A v B 6 antibodies, our findings support a role for A v B 6 in human cancer and underscore the therapeutic potential of function blocking A v B 6 antibodies. [Cancer Res 2008;68(2):561-70]
BackgroundThe Janus kinase (JAK) and signal transduction and activation of transcription (STAT) signaling pathway is an attractive target in multiple cancers. Activation of the JAK-STAT pathway is important in both tumorigenesis and activation of immune responses. In diffuse large B-cell lymphoma (DLBCL), the transcription factor STAT3 has been associated with aggressive disease phenotype and worse overall survival. While multiple therapies inhibit upstream signaling, there has been limited success in selectively targeting STAT3 in patients. Antisense oligonucleotides (ASOs) represent a compelling therapeutic approach to target difficult to drug proteins such as STAT3 through of mRNA targeting. We report the evaluation of a next generation STAT3 ASO (AZD9150) in a non-Hodgkin’s lymphoma population, primarily consisting of patients with DLBCL.MethodsPatients with relapsed or treatment refractory lymphoma were enrolled in this expansion cohort. AZD9150 was administered at 2 mg/kg and the 3 mg/kg (MTD determined by escalation cohort) dose levels with initial loading doses in the first week on days 1, 3, and 5 followed by weekly dosing. Patients were eligible to remain on therapy until unacceptable toxicity or progression. Blood was collected pre- and post-treatment for analysis of peripheral immune cells.ResultsThirty patients were enrolled, 10 at 2 mg/kg and 20 at 3 mg/kg dose levels. Twenty-seven patients had DLBCL. AZD9150 was safe and well tolerated at both doses. Common drug-related adverse events included transaminitis, fatigue, and thrombocytopenia. The 3 mg/kg dose level is the recommended phase 2 dose. All responses were seen among DLBCL patients, including 2 complete responses with median duration of response 10.7 months and 2 partial responses. Peripheral blood cell analysis of three patients without a clinical response to therapy revealed a relative increase in proportion of macrophages, CD4+, and CD8+ T cells; this trend did not reach statistical significance.ConclusionsAZD9150 was well tolerated and demonstrated efficacy in a subset of heavily pretreated patients with DLBCL. Studies in combination with checkpoint immunotherapies are ongoing.Trial registrationRegistered at ClinicalTrials.gov: NCT01563302. First submitted 2/13/2012.Electronic supplementary materialThe online version of this article (10.1186/s40425-018-0436-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.