Background: Snail1 and Snail2 are highly homologous zinc finger transcriptional repressors exhibiting divergent functions. Results: Snail1 and Snail2 use a unique set of zinc fingers to execute their biological activity. Conclusion: The use of different zinc fingers could explain the functional divergence between Snail transcription factors. Significance: This is the first study dissecting the structural/functional differences between zinc fingers of Snail1 and Snail2 factors.
We demonstrate using Ca 2 þ -dependent calmodulin (CaM)-affinity chromatography and overlay with biotinylated CaM that the adaptor proteins growth factor receptor bound (Grb)7 and Grb7V (a naturally occurring variant lacking the Src homology 2 (SH2) domain) are CaM-binding proteins. Deletion of an amphiphilic basic amino-acid sequence (residues 243-256) predicted to form an a-helix located in the proximal region of its pleckstrin homology (PH) domain demonstrates the location of the CaM-binding domain. This site is identical in human and rodents Grb7, and shares great homology with similar regions of Grb10 and Grb14, and the Mig10 protein from Caenorhabditis elegans. We show that Grb7 and Grb7V are present in the cytosol and bound to membranes, while the deletion mutants (Grb7D and Grb7VD) have less capacity to be associated to membranes. Grb7D maintains in part the capacity to bind phosphoinositides, and CaM competes for phosphoinositide binding. Activation of ErbB2 by heregulin b1 decreases the pool of Grb7 associated to membranes. The cell-permeable CaM antagonist W7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide), but not the CaM-dependent protein kinase II inhibitor KN93, prevents this effect. Highly specific cell-permeable CaM inhibitory peptides decrease the association of Grb7 to membranes. This suggests that CaM regulates the intracellular mobilization of Grb7 in living cells. Direct interaction between enhanced yellow fluorescent protein (EYFP)-Grb7 and enhanced cyan fluorescent protein (ECFP)-CaM chimeras at the plasma membrane of living cells was demonstrated by fluorescence resonance energy transfer (FRET). The FRET signal dramatically decreased in cells loaded with a cellpermeable Ca 2 þ chelator, and was significantly attenuated when enhanced yellow fluorescent protein-Grb7 chimera (EYFP-Grb7)D instead of EYFP-Grb7 was used. Finally, we show that conditioned media from cells transiently transfected with Grb7D and Grb7VD lost its angiogenic activity, in contrast to those from cells transiently transfected with their wild-type counterparts.
Snail1 and Snail2, two highly related members of the Snail superfamily, are direct transcriptional repressors of E-cadherin and EMT inducers. Previous comparative gene profiling analyses have revealed important differences in the gene expression pattern regulated by Snail1 and Snail2, indicating functional differences between both factors. The molecular mechanism of Snail1-mediated repression has been elucidated to some extent, but very little is presently known on the repression mediated by Snail2. In the present work, we report on the characterization of Snail2 repression of E-cadherin and its regulation by phosphorylation. Both the N-terminal SNAG and the central SLUG domains of Snail2 are required for efficient repression of the E-cadherin promoter. The co-repressor NCoR interacts with Snail2 through the SNAG domain, while CtBP1 is recruited through the SLUG domain. Interestingly, the SNAG domain is absolutely required for EMT induction while the SLUG domain plays a negative modulation of Snail2 mediated EMT. Additionally, we identify here novel in vivo phosphorylation sites at serine 4 and serine 88 of Snail2 and demonstrate the functional implication of serine 4 in the regulation of Snail2-mediated repressor activity of E-cadherin and in Snail2 induction of EMT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.