Detailed kinetic and physiological characterisation of eight mannitol-producing lactic acid bacteria, Leuconostoc citreum ATCC 49370, L. mesenteroides subsp. cremoris ATCC19254, L. mesenteroides subsp. dextranicum ATCC 19255, L. ficulneum NRRL B-23447, L. fructosum NRRL B-2041, L. lactis ATCC 19256, Lactobacillus intermedius NRRL 3692 and Lb. reuteri DSM 20016, was performed using a carob-based culture medium, to evaluate their different metabolic capabilities. Cultures were thoroughly followed for 30 h to evaluate consumption of sugars, as well as production of biomass and metabolites. All strains produced mannitol at high yields (>0.70 g mannitol/g fructose) and volumetric productivities (>1.31 g/l h), and consumed fructose and glucose simultaneously, but fructose assimilation rate was always higher. The results obtained enable the studied strains to be divided mainly into two groups: one for which glucose assimilation rates were below 0.78 g/l h (strains ATCC 49370, ATCC 19256 and ATCC 19254) and the other for which they ranged between 1.41 and 1.89 g/l h (strains NRRL B-3692, NRRL B-2041, NRRL B-23447 and DSM 20016). These groups also exhibited different mannitol production rates and yields, being higher for the strains with faster glucose assimilation. Besides mannitol, all strains also produced lactic acid and acetic acid. The best performance was obtained for L. fructosum NRRL B-2041, with maximum volumetric productivity of 2.36 g/l h and the highest yield, stoichiometric conversion of fructose to mannitol.
Microbial oils have been considered a renewable feedstock for bioenergy not competing with food crops for arable land, freshwater and biodiverse natural landscapes. Microalgal oils may also have other purposes (niche markets) besides biofuels production such as pharmaceutical, nutraceutical, cosmetic and food industries. The polyunsaturated fatty acids (PUFAs) obtained from oleaginous microalgae show benefits over other PUFAs sources such as fish oils, being odorless, and non-dependent on fish stocks. Heterotrophic microalgae can use low-cost substrates such as organic wastes/residues containing carbon, simultaneously producing PUFAs together with other lipids that can be further converted into bioenergy, for combined heat and power (CHP), or liquid biofuels, to be integrated in the transportation system. This review analyses the different strategies that have been recently used to cultivate and further process heterotrophic microalgae for lipids, with emphasis on omega-3 rich compounds. It also highlights the importance of studying an integrated process approach based on the use of low-cost substrates associated to the microalgal biomass biorefinery, identifying the best sustainability methodology to be applied to the whole integrated system.
a b s t r a c tHydrothermal treatment (autohydrolysis) is an advantageous alternative to fractionate biomass that was not yet explored for rice straw. In this work, the process was optimised and proved to be highly selective towards hemicellulose. Hydrolysates containing a mixture of oligomeric compounds (mainly xylo-oligosaccharides, XOS), could be obtained under relatively mild operation conditions (210 • C, log R 0 = 3.59), yielding a maximum of 40.1 g/100 g of initial xylan. The produced XOS were separated by molecular mass using gel filtration chromatography (GFC). Different fractions of purified XOS were obtained ranging from small polysaccharides and high DP oligosaccharides (DP ≥23), to medium and low DP oligosaccharides (DP ≥3), and separated fractions of by-products (acetic acid, furan derivatives and phenols) as well as di-, and monosaccharides. GFC was an efficient purification method enabling the recovery of interesting categories of XOS that can have potential applications to the pharma, food and feed industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.