The central goal of this research study was to characterise the different types of reasoning manifested by high school chemistry students when building initial written explanations of a natural phenomenon. In particular, our study participants were asked to explain why a mixture of water and alcohol works as an antifreeze. Data collected in the form of written explanations were analysed using a mechanistic reasoning framework based on the characterisation of system components (e.g., entities, properties, activities, organisation) and paying attention to the causal models invoked by the participants in their explanations. Our analysis revealed that students at the same educational level construct a wide range of explanations for the same phenomenon that are indicative of different reasoning modes going from descriptive to relational to simple causal to emerging mechanistic. Although the explanations generated by students in our sample were not very sophisticated in terms of the causal models on which they relied, some participants were capable of generating mechanistic explanations using particulate models of matter. The framework for analysis introduced in this contribution can be of use to teachers and researchers in the characterisation of student reasoning.
Learning the key concepts of chemical
kinetics is a challenge for
higher education students. These difficulties are due, among other
things, to the fact that traditional teaching does not consider the
findings of research on students’ learning in this particular
domain of chemistry. In this commentary, we propose research-based
criteria for the selection of experiments that respond to the learning
difficulties in chemical kinetics that have been widely reported in
recent years. Additionally, we discuss a teaching strategy that may
be appropriate to favor the evolution of students’ intuitive
conceptions by evaluating their ideas and those of their peers in
the analysis of scientific evidence.
Constructing explanations of scientific phenomena is a high-leverage practice that promotes student understanding. In the context of this study, we acknowledge that children are used to receiving explanations from teachers. However, they are rarely encouraged to construct explanations about the causes and consequences of phenomena. We modified a strategy to elicit and analyze primary students’ reasoning based on scientific theory as a methodological advance in learning and cognition. The participants were fourth-graders of middle socioeconomic status in Chile’s geographical zone with high seismic risk. They drew explanations about the causes and consequences of earthquakes during a learning unit of eighteen hours oriented toward explanation-construction based on the Tectonic Plates Theory. A constant comparative method was applied to analyze drawings and characterize students’ reasoning used in pictorial representations, following the first coding step of the qualitative Grounded Theory approach. The results show the students expressed progressive levels of reasoning. However, several participants expressed explanations based on the phenomena causes even at an early stage of formal learning. More sophisticated reasoning regarding the scientific theory underpinning earthquakes was found at the end of the learning unit. We discuss approaching elementary students’ scientific reasoning in explanations based on theory, connected with context-based science education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.