The interaction of the water-soluble 5,10,15,20-tetrakis(l -methyl-4-pyridyl)-21H,23H-porphine (TMPyP) with different 2:1 phyllosilicates was examined by Raman and UV-visible spectroscopies. The clay samples were saturated with the tetracationic porphyrin and isolated from the aqueous suspension. A red shift of the Soret band was observed for all the clay-TMPyP systems in the order vermiculite < Laponite < mica-smectite (Syn-1) < montmorillonite (SWy-2). Furthermore, three components were observed for the Soret band (at ~425, 455 and 488 nm). Raman spectra of the isolated solids excited at 457.9 nm, 488.0 nm and 514.5 nm suggest the occurrence of porphyrin protonation, nonplanar distortion and rotation of the meso substituent. Based on the vibrational data, an acidity scale was proposed for the clays: vermiculite < Laponite < SWy-2 < Syn-1. The relative contribution of the protonated spectra is larger at 457.9 nm than at 488.0 nm, suggesting that the peak at 455 nm corresponds to the protonated species. In Laponite, the relative intensity of the meso substituent band at ~1635 cm-1 indicates that the dihedral angle formed between the porphyrin and the methyl-pyridyl rings decreased in the non-protonated porphyrin as a consequence of intercalation. Raman data are thus consistent with the presence of at least two porphyrin species in resonance at 457.9 nm: the protonated and a more planar non-protonated porphyrin. At 488.0 nm the number of enhanced modes increases suggesting a decrease in the porphyrin symmetry. This allows assignment of the absorption band centered at 488 nm to a non-planar porphyrin conformation.
Recebido em 5/7/10; aceito em 17/9/10; publicado na web em 25/10/10 Herein, the immobilization of some Schiff base-copper(II) complexes in smectite clays is described as a strategy for the heterogenization of homogeneous catalysts. The obtained materials were characterized by spectroscopic techniques, mostly UV/Vis, EPR, XANES and luminescence spectroscopy. SWy-2 and synthetic Laponite clays were used for the immobilization of two different complexes that have previously shown catalytic activity in the dismutation of superoxide radicals, and disproportionation of hydrogen peroxide. The obtained results indicated the occurrence of an intriguing intramolecular redox process involving copper and the imine ligand at the surface of the clays. These studies are supported by computational calculations.
Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.