The current literature reveals that the intrathalline coexistence of multiple microalgal taxa in lichens is more common than previously thought, and additional complexity is supported by the coexistence of bacteria and basidiomycete yeasts in lichen thalli. This replaces the old paradigm that lichen symbiosis occurs between a fungus and a single photobiont. The lichen Ramalina farinacea has proven to be a suitable model to study the multiplicity of microalgae in lichen thalli due to the constant coexistence of Trebouxia sp. TR9 and T. jamesii in long-distance populations. To date, studies involving phycobiont diversity within entire thalli are based on Sanger sequencing, but this method seems to underestimate the diversity. Here, we aim to analyze both the microalgal diversity and its community structure in a single thallus of the lichen R. farinacea by applying a 454 pyrosequencing approach coupled with a careful ad hoc-performed protocol for lichen sample processing prior to DNA extraction. To ascertain the reliability of the pyrosequencing results and the applied bioinformatics pipeline results, the thalli were divided into three sections (apical, middle and basal zones), and a mock community sample was used. The developed methodology allowed 40448 filtered algal reads to be obtained from a single lichen thallus, which encompassed 31 OTUs representative of different microalgae genera. In addition to corroborating the coexistence of the two Trebouxia sp. TR9 and T. jamesii taxa in the same thallus, this study showed a much higher microalgal diversity associated with the lichen. Along the thallus ramifications, we also detected variations in phycobiont distribution that might correlate with different microenvironmental conditions. These results highlight R. farinacea as a suitable material for studying microalgal diversity and further strengthen the concept of lichens as multispecies microecosystems. Future analyses will be relevant to ecophysiological and evolutionary studies to understand the roles of the multiple photobionts in lichen symbioses.
The genetic variation of Citrus tristeza virus (CTV) was analysed by comparing the predominant sequence variants in seven genomic regions (p33, p65, p61, p18, p13, p20 and p23) of 18 pathogenically distinct isolates from seven different countries. Analyses of the selective constraints acting on each codon suggest that most regions were under purifying selection. Phylogenetic analysis shows diverse patterns of molecular evolution for different genomic regions. A first clade composed of isolates that are genetically close to the reference mild isolates T385 or T30 was inferred from all genomic regions. A second clade, mostly comprising virulent isolates, was defined from regions p33, p65, p13 and p23. For regions p65, p61, p18, p13 and p23, a third clade that mostly included South American isolates could not be related to any reference genotype. Phylogenetic relationships among isolates did not reflect their geographical origin, suggesting significant gene flow between geographically distant areas. Incongruent phylogenetic trees for different genomic regions suggested recombination events, an extreme that was supported by several recombination-detecting methods. A phylogenetic network incorporating the effect of recombination showed an explosive radiation pattern for the evolution of some isolates and also grouped isolates by virulence. Taken together, the above results suggest that negative selection, gene flow, sequence recombination and virulence may be important factors driving CTV evolution.
Lichen thalli represent the most conspicuous examples of fungal-algal interactions. Studies that describe phycobiont diversity within entire thalli are based mainly on Sanger sequencing. In some lichen species, this technique could underestimate the intrathalline coexistence of multiple microalgae. In this study different multi-tool approaches were applied to two lichen taxa, Circinaria hispida and Flavoparmelia soredians, to detect algal coexistence. Here, we combined Sanger sequencing, a specific polymerase chain reaction (PCR) primer, 454-pyrosequencing, phycobiont isolation and ultrastructural characterization. Furthermore, we compared pyrenoid ultrastructural features of lichenized phycobionts with microalgae isolated in culture. An improved methodology was used to isolate and propagate phycobionts which, in combination with fast genetic identification, resulted in a considerable reduction in time and cost to complete the process. This isolation method, coupled with a specific PCR primer, allowed for the detection of coexisting algae in C. hispida (four Trebouxia lineages). 454-pyrosequencing detected only a fraction of such diversity, while Sanger sequencing identified only the primary phycobiont. Ultrastructural features of the isolated algae were observed by transmission electron microscopy; the maintenance of the pyrenoid characteristics suggested the existence of different Trebouxia lineages. In F. soredians a single Trebouxia lineage was identified using all these approaches.In cases of lichens with algal coexistence, a combination of different molecular and ultrastructural approaches may be required to reveal the underlying algal diversity within a single thallus. The approach proposed in this study provides information about the relationship between molecular and ultrastructural data, and represents an improvement in the delimitation of taxonomic features which is needed to recognize intrathalline Trebouxia diversity.
Lichen symbioses are microecosystems hosting many other living organisms besides the two major lichen symbionts (i.e., lichenized fungi [the mycobiont] and green microalgae or cyanobacteria [the photobiont]). Recent investigations evidenced that other fungi, non‐photosynthetic bacteria, and microalgae co‐inhabit within the lichen thalli, but their diversity and their roles are still underinvestigated. Here we present an ad hoc stratified sampling design and in‐depth Illumina paired‐end metabarcoding approach to explore microalgal diversity in lichen thalli of the model species Ramalina farinacea from different ecologies. Lichen thalli were surveyed according to three different sizes, and different thallus parts were considered for molecular, bioinformatics, and community diversity analyses. The results revealed that microalgal diversity strongly depends on the growth stage of the thalli, the geographic area, and the habitat type. The results also show that microalgal diversity does not vary along the thallus branches (lacinias)—that is, it does not correlate with the apical growth and founder effects—and that there is no balanced co‐presence of two main photobionts as previously established in R. farinacea. The sampling design performed here minimizes bias in the assessment of photobiont diversity in lichens and is proposed to be reliable and applicable to further study microalgal diversity in lichen symbioses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.