Warm water aquaculture is widely practiced in Kenya and is dominated by the culture of Nile tilapia (Oreochromis niloticus) (75% of total production) followed by African catfish (Clarias gariepinus) at 18%. Aquaculture started in Kenya in 1920’s and has been on upward trend until 2014 when it peaked at 24,096 MT. However, production reduced drastically in the past 3 years, with 14,952 metric tonnes (MT) reported in 2016. Most farmers practice earthen pond based semi-intensive culture system. Commercial intensive culture of Nile tilapia (O. niloticus) in cages in Lake Victoria has grown significantly in the last five years with a production of 12 million kg of fish every cycle (about 8 months). Recirculation aquaculture system (RAS) is also gaining popularity mainly in intensive hatcheries. The freshwater cages have been marred by increasing frequencies of fish kills with obvious financial and environmental implications. Although limited information exists on fish disease outbreaks across the country, certain well known diseases in farmed fish have been reported. These include; fungal, mainly saprolegniasis, bacterial, mainly hemorrhagic disease and pop-eye diseases. Parasites have also been documented in farmed O. niloticus and C. gariepinus. Although prophylactic treatments are used in some hatcheries in order to prevent infections, limited biosecurity measures are in place to prevent diseases in farmed fish. This is because of inadequate knowledge of the economics of fish diseases, poor infrastructure and inadequate human resource specialized in fish diseases. This review describes the aquaculture production and health mangement practices of farmed fish in Kenya in order to document actions required for effective monitoring and regulation of future fish health problems across the country.
Reports of similar yields in manure and feed-driven tilapia culture environments raise questions on food utilization in these environments. The possibility that similar production rates are because of utilization of di¡erent foods was investigated using exploratory techniques of multivariate analyses. Using factor analysis, trophic pathways through which food becomes available to ¢sh were explored, and using ANOVA models, water quality, sediment quality and tilapia growth and yields were compared. Conceptual graphic models of the main ecological processes occurring in feed-driven and organically fertilized environments are presented and discussed. In both environments, autotrophic and heterotrophic pathways are important processes that result in the availability of natural foods that are utilized by the ¢sh. Extrapolated ¢sh yield data indicate that with equal nutrient input and stocking density, organically fertilized environments could achieve production rates similar to those in feed-driven environments. The general assumption that supplemental or complete foods are well utilized by tilapia in outdoor stagnant ponds remains challenged, and further research on tilapia feeding behaviour and food selection in feed-and organic fertilizer-driven environments is needed. Ã Signi¢cant at the 0.05 level. ÃÃÃ Signi¢cant at the 0.001 level.Same letters in the multi-comparison of means columns indicate no signi¢cant di¡erence at the 0.05 level. a4b4 Á Á Á. Coe¡., coe⁄cient; Sign., signi¢cance level: NS, not signi¢cant; %SS, percent of total sum of squares; TRT, treatment.Aquaculture Research, 2006, 37, 151^163 Trophic structure in pellet fed and organic fertilized ¢sh ponds P N Muendo et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.