In women, breast cancer is the most commonly diagnosed cancer (11.7% of total cases) and the leading cause of cancer death (6.9%) worldwide. Bioactive dietary components such as Sea buckthorn berries are known for their high carotenoid content, which has been shown to possess anti-cancer properties. Considering the limited number of studies investigating the bioactive properties of carotenoids in breast cancer, the aim of this study was to investigate the antiproliferative, antioxidant, and proapoptotic properties of saponified lipophilic Sea buckthorn berries extract (LSBE) in two breast cancer cell lines with different phenotypes: T47D (ER+, PR+, HER2−) and BT-549 (ER-, PR-, HER2−). The antiproliferative effects of LSBE were evaluated by an Alamar Blue assay, the extracellular antioxidant capacity was evaluated through DPPH, ABTS, and FRAP assays, the intracellular antioxidant capacity was evaluated through a DCFDA assay, and the apoptosis rate was assessed by flow cytometry. LSBE inhibited the proliferation of breast cancer cells in a concentration-dependent manner, with a mean IC50 of 16 µM. LSBE has proven to be a good antioxidant both at the intracellular level, due to its ability to significantly decrease the ROS levels in both cell lines (p = 0.0279 for T47D, and p = 0.0188 for BT-549), and at the extracellular level, where the ABTS and DPPH inhibition vried between 3.38–56.8%, respectively 5.68–68.65%, and 35.6 mg/L equivalent ascorbic acid/g LSBE were recorded. Based on the results from the antioxidant assays, LSBE was found to have good antioxidant activity due to its rich carotenoid content. The flow cytometry results revealed that LSBE treatment induced significant alterations in late-stage apoptotic cells represented by 80.29% of T47D cells (p = 0.0119), and 40.6% of BT-549 cells (p = 0.0137). Considering the antiproliferative, antioxidant, and proapoptotic properties of the carotenoids from LSBE on breast cancer cells, further studies should investigate whether these bioactive dietary compounds could be used as nutraceuticals in breast cancer therapy.
Lipid nanoparticles are getting a growing scientific and technological interest, worldwide. Either Solid Lipid Nanoparticles (SLNs), Nanostructured Lipid Carriers (NLCs), Lipid Drug Conjugates (LDCs) or Polymer-Lipid Nanoparticles (PLNs) have been produced and investigated last years, being reccomended as emerging carrier systems for many food and biomedical applications. An overview of the last publications, mainly since 2017 is presented, underlying the most important methods and techniques used for their preparation (e.g. high shear homogenization in hot and cold conditions, ultrasound assisted melt emulsification) as well techniques applied for measuring the size, calorimetric properties, zeta-potential, etc. Most relevant data related to the use of food-grade ingredients and designed lipid nanoparticles as delivery systems for organic and inorganic bioactive molecules in food or packaging’s are presented. The major reason for this trend in food science is the aim to overcome problems associated with the low bioavailability of many lipophilic bioactive compounds which are claimed to bring benefits to human health (carotenoid or anthocyanin pigments, sterols, vitamins). Finally, the recent applications of different formulas of lipid nanoparticles as drug carriers for in vitro experiments or for in vivo therapy (oral, parenteral or transdermal formulas) are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.