The Eumetabola (Endopterygota (also known as Holometabola) plus Paraneoptera) have the highest number of species of any clade, and greatly contribute to animal species biodiversity. The palaeoecological circumstances that favoured their emergence and success remain an intriguing question. Recent molecular phylogenetic analyses have suggested a wide range of dates for the initial appearance of the Holometabola, from the Middle Devonian epoch (391 million years (Myr) ago) to the Late Pennsylvanian epoch (311 Myr ago), and Hemiptera (310 Myr ago). Palaeoenvironments greatly changed over these periods, with global cooling and increasing complexity of green forests. The Pennsylvanian-period crown-eumetabolan fossil record remains notably incomplete, particularly as several fossils have been erroneously considered to be stem Holometabola (Supplementary Information); the earliest definitive beetles are from the start of the Permian period. The emergence of the hymenopterids, sister group to other Holometabola, is dated between 350 and 309 Myr ago, incongruent with their current earliest record (Middle Triassic epoch). Here we describe five fossils--a Gzhelian-age stem coleopterid, a holometabolous larva of uncertain ordinal affinity, a stem hymenopterid, and early Hemiptera and Psocodea, all from the Moscovian age--and reveal a notable penecontemporaneous breadth of early eumetabolan insects. These discoveries are more congruent with current hypotheses of clade divergence. Eumetabola experienced episodes of diversification during the Bashkirian-Moscovian and the Kasimovian-Gzhelian ages. This cladogenetic activity is perhaps related to notable episodes of drying resulting from glaciations, leading to the eventual demise in Euramerica of coal-swamp ecosystems, evidenced by floral turnover during this interval. These ancient species were of very small size, living in the shadow of Palaeozoic-era 'giant' insects. Although these discoveries reveal unexpected Pennsylvanian eumetabolan diversity, the lineage radiated more successfully only after the mass extinctions at the end of the Permian period, giving rise to the familiar crown groups of their respective clades.
The entomopathogenic bacterium Bacillus thuringiensis is known to secrete a zinc metalloprotease (InhA) that specifically cleaves antibacterial peptides produced by insect hosts. We identified a second copy of the inhA gene, named inhA2, in B. thuringiensis strain 407 Cry ؊ . The inhA2 gene encodes a putative polypeptide showing 66.2% overall identity with the InhA protein and harboring the zinc-binding domain (HEXXH), which is characteristic of the zinc-requiring metalloproteases. We used a transcriptional inhA2-lacZ fusion to show that inhA2 expression is induced at the onset of the stationary phase and is overexpressed in a Spo0A minus background. The presence of a reverse Spo0A box in the promoter region of inhA2 suggests that Spo0A directly regulates the transcription of inhA2. To determine the role of the InhA and InhA2 metalloproteases in pathogenesis, we used allelic exchange to isolate single and double mutant strains for the two genes. Spores and vegetative cells of the mutant strains were as virulent as those of the parental strain in immunized Bombyx mori larvae infected by the intrahemocoelic route. Exponential phase cells of all the strains displayed the same in vitro potential for colonizing the vaccinated hemocoel. We investigated the synergistic effect of the mutant strain spores on the toxicity of Cry1C proteins against Galleria mellonella larvae infected via the oral pathway. The spores of ⌬inhA2 mutant strain were ineffective in providing synergism whereas those of the ⌬inhA mutant strain were not. These results indicate that the B. thuringiensis InhA2 zinc metalloprotease has a vital role in virulence when the host is infected via the oral route.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.