Patient-provider communication plays a major role in healthcare with its main goal being to improve the patient's health and build a trustworthy relationship between the patient and the doctor. Provider's efficiency and effectiveness in communication can be improved through training in order to meet the essential elements of communication that are relevant during medical encounters. We surmised that speech-enabled conversational agents could be used as a training tool. In this study, we propose designing an ontology-based interaction model that can direct software agents to train dental and medical students. We transformed sample scenario scripts into a formalized ontology training model that links utterances of the user and the machine that expresses patient-provider communication. We created two instance-based models from the ontology to test the operational execution of the model using a prototype software engine. The assessment revealed that the dialogue engine was able to handle about 62% of the dialogue links. Future direction of this work will focus on further enhancing and capturing the features of patient-provider communication, and eventual deployment for pilot testing.
The immune system is the body's defense against infectious organisms and other invaders. It is our immune system that keeps us healthy as we drift through a sea of pathogens. Healthy immune function depends on meticulous regulation of lymphocyte activation. Previous studies have shown unfavorable effects of μg on several physiological systems, including a significant reduction of the adaptive immune response. Lymphocyte movement through interstitium is critically important for the immune response. Thus, the activation of lymphocytes depends on various factors such as cell-to-cell contact due to temporary contact, permanent aggregation or by the uptake of soluble factors such as interleukin 1. Microgravity induced loss of lymphocyte locomotory activity, along with diminished lymphocyte activation, can be counteracted by nutritional supplements such as nucleotides. A study conducted by Andreazzoli et al., proposes that the knowledge of cellular and molecular mechanisms of gravity and its influence on T cells is required for creating the provision of therapeutic and possible preventive targets to keep the bone and immune systems of astronauts fully functional during long-term space missions, in addition to aiding regular people with immune deficiencies. When an immune system is compromised it can lead to various infections as well as cancerous growths. Discovering the ins and outs of the lymphocyte regulatory pathways can account for controlling and studying medicinal treatments for all forms or immune disorders. Therefore, studying both the long-term and short-term effects of microgravity is of great significance, as it has an invalidation nature that affects how the regulators of the immune system are readily able to function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.