SummaryWe describe the engineering of a human immunodeficiency virus-1 (HIV-1) p24-immunoglobulin A (IgA) antigen-antibody fusion molecule for therapeutic purposes and its enhancing effect on fused antigen expression in tobacco plants. Although many recombinant proteins have been expressed in transgenic plants as vaccine candidates, low levels of expression are a recurring problem. In this paper, using the HIV p24 core antigen as a model vaccine target, we describe a strategy for increasing the yield of a recombinant protein in plants. HIV p24 antigen was expressed as a genetic fusion with the α 2 and α 3 constant region sequences from human Ig α -chain and targeted to the endomembrane system. The expression of this fusion protein was detected at levels approximately 13-fold higher than HIV p24 expressed alone, and a difference in the behaviour of the two recombinant proteins during trafficking in the plant secretory pathway has been identified.
Vaccine development has been hampered by difficulties in developing new and safe adjuvants, so alternative technologies that offer new avenues forward are urgently needed. The goal of this study was to express a monoclonal recombinant immune complex in a transgenic plant. A recombinant protein consisting of a tetanus toxin C fragment-specific monoclonal antibody fused with the tetanus toxin C fragment was designed and expressed. Immune complex formation occurred between individual fusion proteins to form immune complexlike aggregates that bound C1q and Fc␥RIIa receptor and could be targeted to antigen-presenting cells. Unlike antigen alone, the recombinant immune fusion complexes were highly immunogenic in mice and did not require coadministration of an adjuvant (when injected subcutaneously). Indeed, these complexes elicited antibody titers that were more than 10,000 times higher than those observed in animals immunized with the antigen alone. Furthermore, animals immunized with only 1 g of recombinant immune complex without adjuvant were fully protected against lethal challenge. This the first report on the use of a genetic fusion between antigen and antibody to ensure an optimal expression ratio between the two moieties and to obtain fully functional recombinant immune complexes as a new vaccine model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.