We use the gauge/gravity correspondence to calculate the rate of photon production in a strongly coupled N = 4 plasma in the presence of an intense magnetic field. We start by constructing a family of back reacted geometries that include the black D3-brane solution, as a smooth limiting case for B = 0, and extends to backgrounds with an arbitrarily large constant magnetic field. This family provides the gravitational dual of a field theory in the presence of a very strong magnetic field which intensity can be fixed as desired and allows us to study its effect on the photon production of a quark-gluon plasma. The inclusion of perturbations in the electromagnetic field on these backgrounds is consistent only if the metric is perturbed as well, so we use methods developed to treat operator mixing to manage these general perturbations. Our results show a clear enhancement of photon production with a significant anisotropy, which, in qualitative agreement with the experiments of heavy ion collisions, is particularly noticeable for low P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.