Twisted magnetic field lines in solar active regions constitute stressed flux systems, the reconnection of which can release the stored (excess) magnetic energy in the form of solar flares. Using co-registered photospheric vector magnetograms and chromospheric H images for 29 flares, we explore the spatial relationship between these flares and the magnetic topology of the active regions in which they occur. We find two dominant trends. First, flares are preferentially initiated in subregions that have a high gradient in twist. Second, flare initiation occurs close to chirality inversion lines (which separate regions with twist of opposite handedness). Our results demonstrate that magnetic helicity, as manifested in the twist parameter, plays an important role in magnetic reconnection and solar flaring activity.
Coronal cavities are regions of low coronal emission that usually sit above solar prominences. These systems can exist for days or months before erupting. The magnetic structure of the prominence-cavity system during the quiescent period is important to understanding the pre-eruption phase. We describe observations of a coronal cavity situated above a solar prominence observed on the western limb as part of an Interface Region Imaging Spectrograph (IRIS) and Hinode coordinated Observation Program (IHOP 264). During the observation run, an inflow of hot plasma observed by the Hinode X-Ray Telescope (XRT) envelopes the coronal cavity and triggers an eruption of chromospheric plasma near the base of the prominence. During and after the eruption, bright X-ray emission forms within the cavity and above the prominence. IRIS and the Hinode EUV Imaging Spectrometer (EIS) show strong blue shifts in both chromospheric and coronal lines during the eruption. The Hinode Solar Optical Telescope (SOT) Ca II H-line data show bright emission during the ejection with complex, turbulent, flows near the prominence and along the cavity wall. These observations suggest a cylindrical flux rope best represents the cavity structure with the ejected material flowing along magnetic field lines supporting the cavity. We also find evidence for heating of the plasma inside the cavity after the flows. A model of the magnetic structure of the cavity comprised of a weakly twisted flux rope can explain the observed loops in the X-ray and EUV data. Observations from the Coronal Multichannel Polarimeter (CoMP) are compared to predicted models and are inconclusive. We find that more sensitive measurements of the magnetic field strength along the line-of-sight are needed to verify this configuration.
We present an investigation of a coronal cavity observed above the western limb in the coronal red line Fe X 6374Å using a telescope of Peking University and in the green line Fe XIV 5303Å using a telescope of Yunnan Observatories, Chinese Academy of Sciences during the total solar eclipse on 2017 August 21. A series of magnetic field models are constructed based on the magnetograms taken by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO) one week before the eclipse. The model field lines are then compared with coronal structures seen in images taken by the Atmospheric Imaging Assembly on board SDO and in our coronal red line images. The best-fit model consists of a flux rope with a twist angle of 3.1π, which is consistent with the most probable value of the total twist angle of interplanetary flux ropes observed at 1 AU. Linear polarization of the Fe XIII 10747Å line calculated from this model shows a "lagomorphic" signature that is also observed by the Coronal Multichannel Polarimeter of the High Altitude Observatory. We also find a ring-shaped structure in the line-of-sight velocity of Fe XIII 10747Å, which implies hot plasma flows along a helical magnetic field structure, in the cavity. These results suggest that the magnetic structure of the cavity is a highly twisted flux rope, which may erupt eventually. The temperature structure of the cavity has also been investigated using the intensity ratio of Fe XIII 10747Å and Fe X 6374Å.
Solar coronal holes (CHs) are large regions of the corona magnetically open to interplanetary space. The nearly rigid north -south CH boundaries (CHBs) of equatorward extensions of polar CHs are maintained while the underlying photospheric fields rotate differentially, so interchange magnetic reconnection is presumed to be occurring continually at the CHBs. The time and size scales of the required reconnection events at CHBs have not been established from previous observations with soft X-ray images. We use TRACE 195 Å observations on 9 December 2000 of a long-lived equatorial extension of the negativepolarity north polar CH to look for changes of 5 arcsec to > 20 arcsec at the western CHB. Brightenings and dimmings are observed on both short (≈ 5 minutes) and long (≈ 7 hours) time scales, but the CHB maintains its quasi-rigid location. The transient CHB changes do not appear associated with either magnetic field enhancements or the changes in those field enhancements observed in magnetograms from the Michelson Doppler Imager (MDI) on SOHO. In seven hours of TRACE observations we find no examples of the energetic jets similar to those observed to occur in magnetic reconnection in polar plumes. The lack of dramatic changes in the diffuse CHB implies that gradual magnetic reconnection occurs high in the corona with large ( 10°) loops and/or weak coronal fields. We compare our results with recent observations of active regions at CHBs. We also discuss how the magnetic polarity symmetry surrounding quasi-rigid CHs implies an asymmetry in the interchange reconnection process and a possible asymmetry in the solar wind composition from the eastern and western CHB source regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.