On the dry, western edge of the eastern deciduous forest of the USA (Cross Timbers), the drought-tolerant, evergreen eastern redcedar (Juniperus virginiana) is encroaching into post oak-(Quercus stellata) dominated woodlands. The overall goal of this study was to examine whether the drought tolerance strategies of eastern redcedar provide it a competitive advantage over post oak and whether this is a key attribute facilitating its successful establishment in the Cross Timbers. Specifically, we assessed xylem water potential and leaf gas exchange of these two species growing in single-species stands and in a mixed-species stand. We found that both species exhibit a similar degree of isohydry and close their stomates to the same extent in response to declining xylem water potentials. Both species had similar relative reductions in gas exchange in response to drought, despite differences in xylem anatomy. However, post oak had leaf-level gas exchange rates approximately 5× greater than eastern redcedar during periods of high moisture availability. Therefore, it did not appear that eastern redcedar encroachment into an oak-dominated forest is facilitated by growing season differences in carbon gain, although evergreen eastern redcedar can conduct gas exchange year-round when conditions are favorable while post oak is deciduous. We found that volumetric soil water content (0-45 cm) was lower in the pure eastern redcedar stand than the mixedspecies or pure post oak stand which may indicate that eastern redcedar may experience favorable soil moisture conditions when encroaching into open oak woodlands. Moreover, water potentials in eastern redcedar tended to be more negative in pure stands compared to the mixed stand. Our results suggest the two species may be using water from different depths, reducing competition. Overall, our findings indicate that eastern redcedar encroachment into formerly oak-dominated Cross Timbers forests likely will continue under moderate drought, in the absence of fire, with consequences for water budgets, carbon cycling, grazing forage, wildlife habitat, and wildfire risk.
Eastern redcedar (Juniperus virginiana L., redcedar) encroachment is transitioning the oak-dominated Cross-Timbers of the southern Great Plain of the USA into mixed-species forests. However, it remains unknown how the re-assemblage of tree species in a semiarid to sub-humid climate affects species-specific water use and competition, and ultimately the ecosystem-level water budget. We selected three sites representative of oak, redcedar, and oak and redcedar mixed stands with a similar total basal area (BA) in a Cross-Timbers forest near Stillwater, Oklahoma. Sap flow sensors were installed in a subset of trees in each stand representing the distribution of diameter at breast height (DBH). Sap flow of each selected tree was continuously monitored over a period of 20 months, encompassing two growing seasons between May 2017 and December 2018. Results showed that the mean sap flow density (Sd) of redcedar was usually higher than post oaks (Quercus stellata Wangenh.). A structural equation model showed a significant correlation between Sd and shallow soil moisture for redcedar but not for post oak. At the stand level, the annual water use of the mixed species stand was greater than the redcedar or oak stand of similar total BA. The transition of oak-dominated Cross-Timbers to redcedar and oak mixed forest will increase stand-level transpiration, potentially reducing the water available for runoff or recharge to groundwater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.