Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.
The present study verified that MTX and DM are able to retain bioactivity when loaded into PSA-TMC nanoparticles. Although in vitro efficacy was not increased, the in vivo efficacy will likely be enhanced by the site-specific targeting conferred by nanoparticle entrapment.
IntroductionThe transcription factor nuclear factor-kappa B (NF-κB) is highly involved in regulation of a number of cellular processes, including production of inflammatory mediators. Thus, this transcription factor plays a role in pathology of many diseases, including rheumatoid arthritis, an autoimmune disease hallmarked by an imbalance of pro and anti-inflammatory cytokines. Small nucleic acids with sequences that mimic the native binding site of NF-κB have been proposed as treatment options for RA; however due to low cellular penetration and a high degree of instability, clinical applications of these therapeutics have been limited.MethodsHere, we describe the use of N-trimethyl chitosan-polysialic acid (PSA-TMC) nanoparticles coated with decoy oligodeoxynucleotides (ODNs) specific to transcription factor NF-κB (PSA-TMC-ODN) as a method to enhance the stability of the nucleic acids and facilitate increased cellular penetration. In addition to decoy ODN, PSA-TMC nanoparticles were loaded with RA therapeutic methotrexate (MTX), to assess the anti-inflammatory efficacy of a combination therapy approach. Two different in vitro models, a cell line based model as well as a primary RA cell model were used to investigate anti-inflammatory activity. One way ANOVA followed by Holm-Sidak stepdown comparisons was used to determine statistical significance.ResultsIn general, free ODN did not significantly affect secretion of pro-inflammatory cytokines interleukin-6 (IL-6) and interleukin-8, (IL-8) while free MTX had variable efficacy. However, PSA-TMC-ODN and PSA-TMC-ODN-MTX resulted in significant decreases in the inflammatory mediators IL-6 and IL-8 in both cell models. In addition, PSA-TMC exhibited sufficient cellular uptake, as observed through fluorescence microscopy.ConclusionsThese results support our previous findings that PSA-TMC nanoparticles are an effective delivery vehicle for small nucleic acids, and effectively alter the pro-inflammatory state characteristic of RA.
Activation of the transcription factor nuclear factor-kappa B (NF-κB) signaling pathway is associated with enhanced secretion of pro-inflammatory mediators and is thought to play a critical role in diseases hallmarked by inflammation, including cystic fibrosis (CF). Small nucleic acids that interfere with gene expression have been proposed as promising therapeutics for a number of diseases. However, applications have been limited by low cellular penetration and a lack of stability. Nano-sized carrier systems have been suggested as a means of improving the effectiveness of nucleic acid-based treatments. In this study, we successfully coated polysialic acid-N-trimethyl chitosan (PSA-TMC) nanoparticles with NF-κΒ decoy oligonucleotides (ODNs). To demonstrate anti-inflammatory activity, the decoy ODN-coated PSA-TMC nanoparticles were administered to an in vitro model of CF generated via interleukin-1β or P. aeruginosa lipopolysaccharides stimulation of IB3-1 bronchial epithelial cells. While free ODN and PSA-TMC nanoparticles coated with scrambled ODNs did not have substantial impacts on the inflammatory response, the decoy ODN-coated PSA-TMC nanoparticles were able to reduce the secretion of interleukin-6 and interleukin-8, pro-inflammatory mediators of CF, by the epithelial cells, particularly at longer time points. In general, the results suggest that NF-κB decoy ODN-coated TMC-PSA nanoparticles may serve as an effective method of altering the pro-inflammatory environment associated with CF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.