Determining how chromatin is remodelled during early development, when totipotent cells begin to differentiate into specific cell types, is essential to understand how epigenetic states are established. An important mechanism by which chromatin can be remodelled is the replacement of major histones with specific histone variants. During early mammalian development H2A.Z plays an essential, but unknown, function(s). We show here that undifferentiated mouse cells of the inner cell mass lack H2A.Z, but upon differentiation H2A.Z expression is switched on. Strikingly, H2A.Z is first targeted to pericentric hetero chromatin and then to other regions of the nucleus, but is excluded from the inactive X chromosome and the nucleolus. This targeted incorporation of H2A.Z could provide a critical signal to distinguish constitutive from facultative heterochromatin. In support of this model, we demonstrate that H2A.Z can directly interact with the pericentric heterochromatin binding protein INCENP. We propose that H2A.Z functions to establish a specialized pericentric domain by assembling an architecturally distinct chromatin structure and by recruiting specific nuclear proteins.
Mammalian centromere function depends upon a specialized chromatin organization where distinct domains of CENP-A and dimethyl K4 histone H3, forming centric chromatin, are uniquely positioned on or near the surface of the chromosome. These distinct domains are embedded in pericentric heterochromatin (characterized by H3 methylated at K9). The mechanisms that underpin this complex spatial organization are unknown. Here, we identify the essential histone variant H2A.Z as a new structural component of the centromere. Along linear chromatin fibers H2A.Z is distributed nonuniformly throughout heterochromatin, and centric chromatin where regions of nucleosomes containing H2A.Z and dimethylated K4 H3 are interspersed between subdomains of CENP-A. At metaphase, using the inactive X chromosome centromere as a model, complex folding of this fiber produces spatially positioned domains where H2A.Z/dimethylated K4 H3 chromatin juxtaposes one side of CENP-A chromatin, whereas a region of H2A/trimethyl K9 H3 borders the other side. A second region of H2A.Z is found, with trimethyl K9 H3 at the inner centromere. We therefore propose that H2A.Z plays an integral role in organizing centromere structure.centromere organization ͉ chromosome structure ͉ histone variants A ll active centromeres contain an evolutionary conserved variant of histone H3 (CENP-A in mammals). Although poorly understood, fundamental to centromere function is the 3D organization of CENP-A containing chromatin, so that it is presented on the poleward face of a chromosome while being embedded in pericentric heterochromatin. This heterochromatin has a role in the cohesion of sister chromatids (1). The complex nature of this organization was demonstrated by showing that, whereas blocks of human CENP-A (and the Drosophila counterpart CID) and H3 nucleosomes (Ϸ15-40 kb) are interspersed along an extended chromatin fiber, the folding of this fiber in mitotic chromosomes yields separate CENP-A-and H3-containing domains, with the H3 domain located toward the inner chromatid region (together, these domains have been referred to as centric chromatin; ref. 2). Most interestingly, this H3-containing domain is enriched with a euchromatic mark, H3 dimethylated at K4 and not K9 H3 methylation associated with the flanking heterochromatin (3). Therefore, it was postulated that this distinct histone modification pattern might contribute to centromere structure and/or identity (3).Our recent studies have demonstrated that another histone variant, H2A.Z, has a role in mitosis (4). When H2A.Z is depleted in mammalian cells, major defects in chromosome segregation (and cytokinesis) are observed with a corresponding loss of HP1␣ from pericentric heterochromatin, indicating this domain is severely disrupted. The mechanism responsible for this defect remains unresolved. Although others (5) and we (6) have shown that the concentration of H2A.Z can dynamically increase at pericentric heterochromatin under different physiological contexts, whether H2A.Z is a core component of this domai...
An important first step in the chromatin remodelling process is the initial binding of a transcriptional activator to a nucleosomal template. We have investigated the ability of Fos/Jun (a transcriptional activator involved in the signal transduction pathway) to interact with its cognate binding site located in the promoter region of the mouse fos-related antigen-2 (fra-2) promoter, when this site was reconstituted into a nucleosome. Two different nucleosome assembly systems were employed to assemble principally non-acetylated or acetylated nucleosomes. The ability of Fos/Jun to interact with an acetylated or an unacetylated nucleosome differed markedly. Fos/Jun bound to an unacetylated nucleosome with only a 4- to 5-fold reduction in DNA binding affinity compared with naked DNA. Strikingly, the binding of Fos/Jun to a single high-affinity site incorporated into an acetylated nucleosome resulted in the complete disruption of nucleosomal structure without histone displacement. Moreover, this disruption was sufficient to facilitate the subsequent binding of a second transcription factor.
Critical to vertebrate development is a complex program of events that establishes specialized tissues and organs from a single fertilized cell. Transitions in chromatin architecture, through alterations in its composition and modification markings, characterize early development. A variant of the H2A core histone, H2A.Z, is essential for development of both Drosophila and mice. We recently showed that H2A.Z is required for proper chromosome segregation. Whether H2A.Z has additional specific functions during early development remains unknown. Here we demonstrate that depletion of H2A.Z by RNA interference perturbs Xenopus laevis development at gastrulation leading to embryos with malformed, shortened trunks. Consistent with this result, whole embryo in situ hybridization indicates that endogenous expression of H2A.Z is highly enriched in the notochord. H2A.Z modifies the surface of a canonical nucleosome by creating an extended acidic patch and a metal ion-binding site stabilized by two histidine residues. To examine the significance of these specific surface regions in vivo, we investigated the consequences of overexpressing H2A.Z and mutant proteins during X. laevis development. Overexpression of H2A.Z slowed development following gastrulation. Altering the extended acidic patch of H2A.Z reversed this effect. Remarkably, modification of a single stabilizing histidine residue located on the exposed surface of an H2A.Z containing nucleosome was sufficient to disrupt normal trunk formation mimicking the effect observed by RNA interference. Taken together, these results argue that key determinants located on the surface of an H2A.Z nucleosome play an important specific role during embryonic patterning and provide a link between a chromatin structural modification and normal vertebrate development.
We have explored a role for the adenovirus (Ad5) E1b58kDa/p53 protein complex in adenovirus replication. This was done by using virus mutants containing different defects in the E1b58kDa gene and cell lines that express either a wild-type p53 protein or a mutant p53 protein. We find that infection of wild-type p53-containing cells with wild-type Ad5 causes a shutoff of p53 and alpha-actin protein synthesis by distinct mechanisms, but neither occurs in mutant p53 cells. Our data also indicate that the shutoff is dependent on formation of the p53/E1b complex and may also involve another virus protein, E4ORF6. Following from these observations we asked whether failure to form the complex resulted in impaired adenovirus replication. Our experiments showed that neither wild-type Ad5 nor the E1b mutant dl338 could replicate in cells expressing a mutant p53 protein, but that wild-type adenovirus replicated well in wild-type p53-expressing cells. Collectively, our data suggest that the interaction between p53 and the E1b58kDa protein is necessary for efficient adenovirus replication. This is the first time such a direct link between the complex and virus replication has been demonstrated. These data raise serious questions about the usefulness of E1b-defective viruses in tumor therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.