Summary Since the myrtle rust pathogen (Austropuccinia psidii) was first reported (as Puccinia psidii) in Brazil on guava (Psidium guajava) in 1884, it has been found infecting diverse myrtaceous species. Because A. psidii has recently spread rapidly worldwide with an extensive host range, genetic and genotypic diversities were evaluated within and among A. psidii populations in its putative native range and other areas of myrtle rust emergence in the Americas and Hawaii. Microsatellite markers revealed several unique multilocus genotypes (MLGs), which grouped isolates into nine distinct genetic clusters [C1–C9 comprising C1: from diverse hosts from Costa Rica, Jamaica, Mexico, Puerto Rico, and USA‐Hawaii, and USA‐California; C2: from eucalypts (Eucalyptus spp.) in Brazil/Uruguay and rose apple (Syzygium jambos) in Brazil; C3: from eucalypts in Brazil; C4: from diverse hosts in USA‐Florida; C5: from Java plum (Syzygium cumini) in Brazil; C6: from guava and Brazilian guava (Psidium guineense) in Brazil; C7: from pitanga (Eugenia uniflora) in Brazil; C8: from allspice (Pimenta dioica) in Jamaica and sweet flower (Myrrhinium atropurpureum) in Uruguay; C9: from jabuticaba (Myrciaria cauliflora) in Brazil]. The C1 cluster, which included a single MLG infecting diverse host in many geographic regions, and the closely related C4 cluster are considered as a “Pandemic biotype,” associated with myrtle rust emergence in Central America, the Caribbean, USA‐Florida, USA‐Hawaii, Australia, China‐Hainan, New Caledonia, Indonesia and Colombia. Based on 19 bioclimatic variables and documented occurrences of A. psidii contrasted with reduced sets of specific genetic clusters (subnetworks, considered as biotypes), maximum entropy bioclimatic modelling was used to predict geographic locations with suitable climate for A. psidii which are at risk from invasion. The genetic diversity of A. psidii throughout the Americas and Hawaii demonstrates the importance of recognizing biotypes when assessing the invasive threats posed by A. psidii around the globe.
Austropuccinia psidii (G. Winter) Beenken, first reported as Puccinia psidii on guava (Psidium guajava) in southern Brazil (Winter, 1884), is an obligate biotrophic pathogen that causes myrtle rust (MR), and threatens numerous Myrtaceae species around the world (Beresford
Contaminated irrigation water constitutes one of the main sources of plant pathogens that can cause disease and lead to potentially significant production losses in forest nurseries. Recycling of contaminated irrigation water increases the risk of spreading diseases. The objective of this study was to evaluate a simple slow sand filtration treatment of irrigation water as a method for eradicating fungal and bacterial pathogens in eucalypt cutting nurseries. Pilot filter units were constructed from PVC pipes containing a 80 cm high layer of sand with grain size varying from 0.50 to 0.75 mm, drainage layers of 10 cm of fine gravel (4 mm) followed by a 15 cm layer of coarse gravel (8 mm), connected to a water outlet. The PVC pipe had space for a 150 mm water column above the sand layer and the filter had a flow rate of 100 to 300 L m -2 h -1 . Eradication of the bacterial pathogen Ralstonia solanacearum, and the fungal pathogens Cylindrocladium candelabrum and Botrytis cinerea through the use of the filter was evaluated. Detection of bacteria in filter-treated irrigation water was performed through the micro drop method followed by PCR of colonies, while fungal pathogens were detected using a castorbean leaf biological bait method. Evaluations were performed daily 35 times for R. solanacearum, 25 times for C. candelabrum and 18 times for B. cinerea during a period of 12 months. After the last evaluation period, samples from various depths of the sand layer in the filters were taken and analyzed for the presence of the plant pathogens. The slow sand filters were able to remove B. cinerea and C. candelabrum spores with 100% efficiency while eradication of R. solanacearum colonies reached up to 99.6%. Colonies of Trichoderma sp. were found predominantly on the all filter layers. The results of this study show that slow sand filters are efficient for recycled water in eucalypt nurseries, especially in eradicating fungal pathogens.
Summary Bacterial leaf blight of eucalypt, caused by Xanthomonas axonopodis, occurs mainly in forest nurseries, but also affects young plants in the field. Avoidance of leaf wetness for long periods of time over the whole nursery and using drip irrigation for clonal hedges are, currently, the most effective measures for controlling bacterial leaf blight on eucalypt. However, as these techniques are very costly, alternative management measures are required. We hypothesized that the management of mineral nutrients could reduce disease severity on eucalypts. To examine this hypothesis, rooted cuttings of Eucalyptus urophylla × E. grandis were irrigated with nutrient solutions containing different concentrations of copper (Cu), boron (Bo), potassium (K), calcium (Ca) and nitrogen (N) before inoculation with X. axonopodis 30 days after starting the nutrient solution treatments. Concentration of K higher than that recommended, commonly used in miniclonal hedges, reduced the severity of bacterial leaf blight. However, disease severity increased with an increasing of N/K ratio. The management of mineral nutrition solution, especially K, has great potential for integrated disease management of X. axonopodis in eucalypt nurseries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.