BackgroundThe majority of Osteogenesis Imperfecta (OI) cases are caused by mutations in one of the two genes, COL1A1 and COL1A2 encoding for the two chains that trimerize to form the procollagen 1 molecule. However, alterations in gene expression and microRNAs (miRNAs) are responsible for the regulation of cell fate determination and may be evolved in OI phenotype.MethodsIn this work, we analyzed the coding region and intron/exon boundaries of COL1A1 and COL1A2 genes by sequence analysis using an ABI PRISM 3130 automated sequencer and Big Dye Terminator Sequencing protocol. COL1A1 and miR-29b expression were also evaluated during the osteoblastic differentiation of mesenchymal stem cell (MSC) by qRT-PCR using an ABI7500 Sequence Detection System.ResultsWe have identified eight novel mutations, where of four may be responsible for OI phenotype. COL1A1 and miR-29b showed lower expression values in OI type I and type III samples. Interestingly, one type III OI sample from a patient with Bruck Syndrome showed COL1A1 and miR-29b expressions alike those from normal samples.ConclusionsResults suggest that the miR-29b mechanism directed to regulate collagen protein accumulation during mineralization is dependent upon the amount of COL1A1 mRNA. Taken together, results indicate that the lower levels observed in OI samples were not sufficient for the induction of miR-29b.
Recent evidence suggests that cell-derived circulating miRNAs may serve as biomarkers of cardiovascular diseases. However, a few studies have investigated the potential of circulating miRNAs as biomarkers for left ventricular hypertrophy (LVH). In this study, we aimed to characterize the miRNA profiles that could distinguish hypertensive patients with LHV, hypertensive patients without LVH and control subjects, and identify potential miRNAs as biomarkers of LVH. LVH was defined by left ventricular mass indexed to body surface area >125 g/m2 in men and >110 g/m2 in women and patients were classified as hypertensive when presenting a systolic blood pressure of 140 mmHg or more, or a diastolic blood pressure of 90 mmHg or more. We employed miRNA PCR array to screen serum miRNAs profiles of patients with LVH, essential hypertension and healthy subjects. We identified 75 differentially expressed miRNAs, including 49 upregulated miRNAs and 26 downregulated miRNAs between LVH and control patients. We chose 2 miRNAs with significant differences for further testing in 59 patients. RT-PCR analysis of serum samples confirmed that miR-7-5p and miR-26b-5p were upregulated in the serum of LVH hypertensive patients compared with healthy subjects. Our findings suggest that these miRNAs may play a role in the pathogenesis of hypertensive LVH and may represent novel biomarkers for this disease.
BackgroundOsteogenesis Imperfecta (OI) (OMIM %259450) is a heterogeneous group of inherited disorders characterized by increased bone fragility, with clinical severity ranging from mild to lethal. The majority of OI cases are caused by mutations in COL1A1 or COL1A2. Bruck Syndrome (BS) is a further recessively-inherited OI-like phenotype in which bone fragility is associated with the unusual finding of pterygia and contractures of the large joints. Notably, several studies have failed to show any abnormalities in the biosynthesis of collagen 1 in BS patientes. Evidence was obtained for a specific defect of the procollagen telopeptide lysine hydroxylation in BS, whereas mutations in the gene PLOD2 have been identified. Recently, several studies described FKBP10 mutations in OI-like and BS patients, suggesting that FKBP10 is a bonafide BS locus.MethodsWe analyzed the coding region and intron/exon boundaries of COL1A1, COL1A2, PLOD2 and FKBP10 genes by sequence analysis using an ABI PRISM 3130 automated sequencer and Big Dye Terminator Sequencing protocol. Mononuclear cells obtained from the bone marrow of BS, OI patients and healthy donors were cultured and osteogenic differentiation was induced. The gene expression of osteoblast specific markers were also evaluated during the osteoblastic differentiation of mesenchymal stem cell (MSC) by qRT-PCR using an ABI7500 Sequence Detection System.ResultsNo mutations in COL1A1, COL1A2 or PLOD2 were found in BS patient. We found a homozygous 1-base-pair duplication (c.831dupC) that is predicted to produce a translational frameshift mutation and a premature protein truncation 17 aminoacids downstream (p.Gly278ArgfsX95). The gene expression of osteoblast specific markers BGLAP, COL1A1, MSX2, SPARC and VDR was evaluated by Real Time RT-PCR during differentiation into osteoblasts and results showed similar patterns of osteoblast markers expression in BS and healthy controls. On the other hand, when compared with OI patients, the expression pattern of these genes was found to be different.ConclusionsOur work suggests that the gene expression profiles observed during mesenchymal stromal cell differentiation into osteoblast are distinct in BS patients as compared to OI patients. The present study shows for the first time that genes involved in osteogenesis are differentially expressed in BS and OI patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12881-016-0301-7) contains supplementary material, which is available to authorized users.
The aim of this work was to evaluate the methylation profile of the p15 (CDKN2B) gene in Brazilian patients with leukemia and to correlate the CDKN2B gene expression with the percentage of methylated CpG dinucleotides in its promoter region. Thirty-one samples from six patients with acute lymphocytic leukemia (ALL), four with chronic myeloid leukemia (CML), and 21 with acute myeloid leukemia (AML) were evaluated by MSP (Methylation-Specific PCR). The CDKN2B gene was found to be methylated in four (67%) of the six ALL samples and in 16 (76%) of the 21 AML samples, but in none of the four CML samples analyzed. We observed a correlation between the CDKN2B mRNA expression (RT-PCR) and the percentage of methylated CpG dinucleotides. Therefore, this study in Brazilian patients confirms that the CDKN2B gene is methylated in the majority of leukemia patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.