Pentraxin 3 (PTX3) is a tumor necrosis factor and interleukin-1beta-stimulated gene that encodes a long PTX with proinflammatory activity. Here, we show that peritoneal macrophages derived from PTX3 transgenic (Tg) mice express higher levels of PTX3 mRNA than macrophages from wild-type (WT) mice, at basal level as well as upon stimulation with zymosan (Zy). Macrophages from Tg mice also showed improved opsonin-independent phagocytosis of Zy particles and the yeast form of the fungus Paracoccidioides brasiliensis. In the case of P. brasiliensis, an enhanced microbicidal activity accompanied by higher production of nitric oxide was also observed in macrophages from Tg mice. Using fluorescein-activated cell sorter analysis and reverse transcriptase-polymerase chain reaction, we demonstrated that basal level of Toll-like receptor-6 and Zy-induced dectin-1 expression was slightly but consistently higher in macrophages from Tg mice than in macrophages from WT mice. Recombinant (r)PTX3 protein binds to Zy particles as well as to yeast cells of P. brasiliensis and addition of rPTX3, to a culture of WT-derived macrophages containing Zy leads to an increase in the phagocytic index, which parallels that of Tg-derived macrophages, demonstrating the opsonin-like activity of PTX3. It is important that blockade of dectin-1 receptor inhibited the phagocytosis of Zy particles by WT and PTX3 Tg macrophages, pointing out the relevant role of dectin-1 as the main receptor involved in Zy uptake. Our results provide evidence for a role of PTX3 as an important component of the innate-immune response and as part of the host mechanisms that control fungal recognition and phagocytosis.
The 43,000-Da glycoprotein (gp43) of Paracoccidioides brasiliensis is an immunodominant antigen for antibody-dependent and immune cellular responses in patients with paracoccidioidomycosis. In order to identify the peptide epitopes involved in the immunological reactivities of the gp43 and to obtain highly specific recombinant molecules for diagnosis of the infection, genomic and cDNA clones representing the entire coding region of the antigen were sequenced. The gp43 open reading frame was found in a 1,329-base pair fragment with 2 exons interrupted by an intron of 78 nucleotides. The gene is present in very few copies per genome, as indicated by Southern blotting and chromosomal megarestriction analysis. A single transcript of 1.5 kilobase pairs was verified in the yeast phase. The gene encodes a polypeptide of 416 amino acids (Mr 45,947) with a leader peptide of 35 residues; the mature protein has a single N-glycosylation site. The deduced amino acid sequence showed similarities of 56-58% with exo-1,3- beta-D-glucanases from Saccharomyces cerevisiae and Candida albicans. However, the gp43 is devoid of hydrolase activity and does not cross-react immunologically with the fungal glucanases. Internal and COOH-terminal gene fragments of the gp43 were expressed as recombinant fusion proteins, which reacted with antibodies elicited against the native antigen.
BackgroundThe fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes.ResultsThe genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE’s) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style.ConclusionsComparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-943) contains supplementary material, which is available to authorized users.
LyeTx I, an antimicrobial peptide isolated from the venom of Lycosa erythrognatha, known as wolf spider, has been synthesised and its structural profile studied by using the CD and NMR techniques. LyeTx I has shown to be active against bacteria (Escherichia coli and Staphylococcus aureus) and fungi (Candida krusei and Cryptococcus neoformans) and able to alter the permeabilisation of L: -alpha-phosphatidylcholine-liposomes (POPC) in a dose-dependent manner. In POPC containing cholesterol or ergosterol, permeabilisation has either decreased about five times or remained unchanged, respectively. These results, along with the observed low haemolytic activity, indicated that antimicrobial membranes, rather than vertebrate membranes seem to be the preferential targets. However, the complexity of biological membranes compared to liposomes must be taken in account. Besides, other membrane components, such as proteins and even specific lipids, cannot be discarded to be important to the preferential action of the LyeTx I to the tested microorganisms. The secondary structure of LyeTx I shows a small random-coil region at the N-terminus followed by an alpha-helix that reached the amidated C-terminus, which might favour the peptide-membrane interaction. The high activity against bacteria together with the moderate activity against fungi and the low haemolytic activity have indicated LyeTx I as a good prototype for developing new antibiotic peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.