A set of core(ferrite, FeO)-shell(carbon, C) composites, C@FeO, C@MnFeO, C@CoFeO, and carbon nanotubes (CNT) impregnated with 2% of Fe (CNT@2%Fe) were prepared. The different composites were tested as redox mediators (RM) in the biological reduction of the azo dye Acid Orange 10 (AO10). Materials were tested at different concentrations from 0.1 to 1.0 g L −1. In the absence of RM, the AO10 decolourisation after 24 h of reaction was only 30% at a rate of 0.2 d −1. In the presence of the core-shell composites, better results were obtained with C@FeO materials at the amount of 1.0 g L −1. The extent of AO10 decolourisation was above 90% and rate improved circa 29-fold. With CNT@2%Fe, the best efficiency (98 ± 3%) was achieved with 0.5 g L −1 leading to a 79-fold rate increase. In abiotic controls, though at lower extent, the reduction of the dyes also occurred likely due to the electron transfer from Fe 2+ to carbon and then to the dye. To prove this, assays combining single CNT and FeO materials were performed, and FeO had effect in the reaction only when combined with CNT. In the biological assay, the rate was the double and the percentage of decolourisation increased from (88 ± 6)% to (97 ± 1)%, when both materials were present in solution as compared with results in the presence of CNT alone. Under abiotic conditions, decolourisation occurred only in the presence of both materials, with a final percentage of (54 ± 2)%. Owing to their magnetic character, materials were removed from the media and successfully applied in successive cycles.
Plasma membrane integrity, ability to transport substrates and maintenance of homeostasis represent obligatory requirements for efficient ethanol production by Saccharomyces cerevisiae. The effect of ethanol on water diffusion through the bilayer and on mediated water movements was evaluated by stopped flow spectroscopy. Ethanol stimulated water diffusion and inhibited mediated water transport. In a strain overexpressing AQY1, the activation energy for water transport increased progressively (from 5.9 to 12.7 kcal mol(-1)) for increasing ethanol concentrations (up to 12% v/v), indicating that mediated water transport lost importance as compared with water diffusion through the bilayer. The effect of ethanol on proton movements (inward by passive diffusion and outward through the PMA1 H(+)-ATPase) was evaluated by measuring the rate of extracellular alcalinization and acidification of unbuffered cell suspensions at different temperatures. Above 10% ethanol, H(+) diffusion was strongly increased at 30 degrees C, but no effect was observed at 20 degrees C up to 12%, indicating the existence of a threshold above which ethanol has a marked effect. On H(+) extrusion, ethanol had no effect at 20 degrees C, but induced a monotonous decrease at higher temperatures. Our results support the view that above a threshold of ethanol concentration, the membrane structure is disrupted, becoming very leaky to H(+).
The catalytic effect of commercial microporous activated carbon (AC) and macroporous carbon nanotubes (CNT) is investigated in reductive bioreactions in continuous high rate anaerobic reactors, using the azo dye Acid Orange 10 (AO10) as model compound as electron acceptor and a mixture of VFA as electron donor. Size and concentration of carbon materials (CM) and hydraulic retention time (HRT) are assessed. CM increased the biological reduction rate of AO10, resulting in significantly higher colour removal, as compared to the control reactors. The highest efficiency, 98%, was achieved with a CNT diameter (d) lower than 0.25 mm, at a CNT concentration of 0.12 g per g of volatile solids (VS), a HRT of 10 h and resulted in a chemical oxygen demand (COD) removal of 85%. Reducing the HRT to 5 h, colour and COD removal in CM-mediated bioreactors were above 90% and 80%, respectively. In the control reactor, thought similar COD removal was achieved, AO10 decolourisation was just approximately 20%, demonstrating the ability of CM to significantly accelerate the reduction reactions in continuous bioreactors. AO10 reduction to the correspondent aromatic amines was proved by high performance liquid chromatography (HPLC). Colour decrease in the reactor treating a real effluent with CNT was the double comparatively to the reactor operated without CNT. The presence of AC in the reactor did not affect the microbial diversity, as compared to the control reactor, evidencing that the efficient reduction of AO10 was mainly due to AC rather than attributed to changes in the composition of the microbial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.