The AMP-activated protein kinase (AMPK) is a major regulator of energy metabolism involved in fatty acid and cholesterol synthesis. In the ovary, cholesterol plays a key role in steroid production. We report the presence of AMPK in rat ovaries, and we have investigated its role in granulosa cells. We show using RT-PCR and Western blot that the mRNAs for the alpha1/2 and beta1/2 subunits and the proteins are found in the ovaries. Immunohistochemistry localized the alpha1 AMPK subunit in granulosa cells, corpus luteum, and oocyte and less abundantly in theca cells. Treatment with 1 mm 5-amino-imidazole-4-carboxyamide-1-beta-D-ribofuranoside (AICAR), an activator of AMPK, increased dose-dependent and time-dependent phosphorylation of AMPKalpha1 on Thr172 in primary granulosa cells. Simultaneously, phosphorylation of acetyl-coenzyme A carboxylase at Ser79 was also increased. AICAR treatment for 48 h halved progesterone secretion, 3beta-HSD protein and mRNA levels, and phosphorylation of both basal MAPK ERK1/2 and p38 and in response to IGF-I and/or FSH in granulosa cells. AICAR treatment (1 mM) had no detectable effect on basal and FSH- and/or IGF-I-induced estradiol production and on granulosa cell proliferation or viability. Adenovirus-mediated expression of dominant negative AMPK totally abolished the effects of AICAR on progesterone secretion, 3beta-HSD protein production, and MAPK ERK1/2 and p38 phosphorylation. Moreover, we showed using specific in- hibitors of ERK1/2 and p38 MAPK that the MAPK ERK1/2 and not p38 is involved in progesterone secretion and 3beta-HSD expression, strongly suggesting that the activation of AMPK in response to AICAR reduces progesterone production through the MAPK ERK1/2 signaling pathway in rat granulosa cells.
Metformin is an anti-diabetic drug commonly used to treat cycle disorders and anovulation in women with polycystic ovary syndrome. However, the effects and molecular mechanism of metformin in the ovary are not entirely understood. We investigated the effects of this drug on steroidogenesis and proliferation in rat granulosa cells. Metformin (10 mM) treatment for 48 h reduced progesterone and estradiol (E2) production in both basal conditions and under FSH stimulation. It also decreased the levels of the HSD3B, CYP11A1, STAR, and CYP19A1 proteins in response to FSH (10(-8) M) and of HSD3B in the basal state only. Metformin treatment (10 mM, 24 h) also reduced cell proliferation and the levels of CCND2 and CCNE proteins without affecting cell viability, both in the basal state and in response to FSH. Furthermore, metformin treatment for 1 h simultaneously increased the Thr172 phosphorylation of PRKAA (adenosine 5' monophosphate-activated protein kinase alpha) and the Ser79 phosphorylation of ACACA (acetyl-Coenzyme A carboxylase alpha). The adenovirus-mediated production of dominant-negative PRKAA totally abolished the effects of metformin on progesterone secretion, HSD3B and STAR protein production, and MAPK3/1 phosphorylation. Conversely, total inhibition of PRKAA Thr172 phosphorylation with the dominant-negative PRKAA adenovirus did not restore the decrease in E2 production and cell proliferation induced by metformin. Our results therefore strongly suggest that metformin reduces progesterone production via a PRKAA-dependent mechanism, whereas PRKAA activation is not essential for the decrease in E2 production and cell growth induced by metformin in rat granulosa cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.