Tsetse fly (Diptera: Glossinidae) viviparous reproductive physiology remains to be explored at the molecular level. Adult females carry their young in utero for the duration of embryonic and larval development, all the while supplying their offspring with nutrients in the form of a "milk" substance secreted from a modified accessory gland. Flies give birth to fully developed third instar larvae that pupariate shortly after birth. Here, we describe the spatial and temporal expression dynamics of two reproduction-associated genes and their products synthesized during the first and second gonotrophic cycles. The proteins studied include a putative yolk protein, Glossina morsitans morsitans yolk protein 1 (GmmYP1) and the major protein found in tsetse "milk" secretions (Glossina morsitans morsitans milk gland protein, GmmMGP). Developmental stage and tissue-specific expression of GmmYP1 show its presence exclusively in the reproductive tract of the fly during oogenesis, suggesting that GmmYP1 acts as a vitellogenic protein. Transcripts for GmmMGP are present only in the milk gland tissue and increase in coordination with the process of larvigenesis. Similarly, GmmMGP can be detected at the onset of larvigenesis in the milk gland, and is present during the full duration of pregnancy. Expression of GmmMGP is restricted to the adult stage and is not detected in the immature developmental stages. These phenomena indicate that the protein is transferred from mother to larvae as nourishment during its development. These results demonstrate that both GmmYP1 and GmmMGP are involved in tsetse reproductive biology, the former associated with the process of oogenesis and the latter with larvigenesis.
Tsetse flies (Diptera: Glossinidia) are vectors of pathogenic African trypanosomes. To develop a foundation for tsetse physiology, a normalized expressed sequence tag (EST) library was constructed from fat body tissue of immune-stimulated Glossina morsitans morsitans. Analysis of 20,257 high-quality ESTs yielded 6372 unique genes comprised of 3059 tentative consensus (TC) sequences and 3313 singletons (available at http://aksoylab.yale.edu). We analysed the putative fat body transcriptome based on homology to other gene products with known functions available in the public domain. In particular, we describe the immune-related products, reproductive function related yolk proteins and milk-gland protein, iron metabolism regulating ferritins and transferrin, and tsetse's major energy source proline biosynthesis. Expression analysis of the three yolk proteins indicates that all are detected in females, while only the yolk protein with similarity to lipases, is expressed in males. Milk gland protein, apparently important for larval nutrition, however, is primarily synthesized by accessory milk gland tissue.
The regulation of iron is critical for maintaining homeostasis in the tsetse fly (Diptera:Glossinidae), in which both adult sexes are strict blood feeders. We have characterized the cDNAs for two putative iron-binding proteins (IBP) involved in transport and storage; transferrin (GmmTsf1) and ferritin from Glossina morsitans morsitans. GmmTsf1 transcripts are detected in the female fat body and in adult reproductive tissues, and only in the adult developmental stage in a bloodmeal independent manner. In contrast, the ferritin heavy chain (GmmFer1HCH) and light chain (GmmFer2LCH) transcripts are expressed ubiquitously, suggesting a more general role for these proteins in iron transport and storage. Protein domain predictions for each IBP suggest both the conservation and loss of several motifs present in their vertebrate homologues. In concert with many other described insect transferrins, putative secreted GmmTsf1 maintains 3 of the 5 residues necessary for ironbinding in the N-terminal lobe, but exhibits a loss of this iron-binding ability in the C-terminal role as well as a loss of large sequence blocks. Both putative GmmFer1HCH and GmmFer2LCH proteins have signal peptides, similar to other insect ferritins. GmmFer2LCH has lost the 5'UTR ironresponsive element (IRE) and, thus, translation is no longer regulated by cellular iron levels. On the other hand, GmmFer1HCH maintains both the conserved ferroxidase center and the 5'UTR IRE; however, transcript variants suggest a more extensive regulatory mechanism for this subunit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.