This paper introduces TIRAMISU, a polyhedral framework designed to generate high performance code for multiple platforms including multicores, GPUs, and distributed machines. TIRAMISU introduces a scheduling language with novel commands to explicitly manage the complexities that arise when targeting these systems. The framework is designed for the areas of image processing, stencils, linear algebra and deep learning. TIRAMISU has two main features: it relies on a flexible representation based on the polyhedral model and it has a rich scheduling language allowing fine-grained control of optimizations. TIRAMISU uses a four-level intermediate representation that allows full separation between the algorithms, loop transformations, data layouts, and communication. This separation simplifies targeting multiple hardware architectures with the same algorithm. We evaluate TIRAMISU by writing a set of image processing, deep learning, and linear algebra benchmarks and compare them with state-of-the-art compilers and hand-tuned libraries. We show that TIRAMISU matches or outperforms existing compilers and libraries on different hardware architectures, including multicore CPUs, GPUs, and distributed machines.
Computational methods that operate directly on three-dimensional molecular structure hold large potential to solve important questions in biology and chemistry. In particular deep neural networks have recently gained significant attention. In this work we present ATOM3D, a collection of both novel and existing datasets spanning several key classes of biomolecules, to systematically assess such learning methods. We develop three-dimensional molecular learning networks for each of these tasks, finding that they consistently improve performance relative to oneand two-dimensional methods. The specific choice of architecture proves to be critical for performance, with three-dimensional convolutional networks excelling at tasks involving complex geometries, while graph networks perform well on systems requiring detailed positional information. Furthermore, equivariant networks show significant promise. Our results indicate many molecular problems stand to gain from three-dimensional molecular learning. All code and datasets can be accessed via https://www.atom3d.ai.
Computationally-aided design of novel molecules has the potential to accelerate drug discovery. Several recent generative models aimed to create new molecules for specific protein targets. However, a rate limiting step in drug development is molecule optimization, which can take several years due to the challenge of optimizing multiple molecular properties at once. We developed a method to solve a specific molecular optimization problem in silico: expanding a small, fragment-like starting molecule bound to a protein pocket into a larger molecule that matches that physiochemical properties of known drugs. Using data efficient E(3) equivariant based neural networks and a 3D atomic point cloud representation, our model learns how to attach new molecular fragments to a growing structure by recognizing realistic intermediates generated en route to a final ligand. This approach always generates chemically valid molecules and incorporates all relevant 3D spatial information from the protein pocket. This framework produces promising molecules as assessed by multiple properties that address binding affinity, ease of synthesis, and solubility. Overall, we demonstrate the feasibility of 3D molecular structure expansion conditioned on protein pockets while maintaining desirable drug-like physiochemical properties and developed a tool that could accelerate the work of medicinal chemists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.