IntroductionThe World Health Organization (WHO) recommends household tuberculosis (TB) contact investigation in low-income countries, but most contacts do not complete a full clinical and laboratory evaluation.MethodsWe performed a randomised trial of home-based, SMS-facilitated, household TB contact investigation in Kampala, Uganda. Community health workers (CHWs) visited homes of index patients with pulmonary TB to screen household contacts for TB. Entire households were randomly allocated to clinic (standard-of-care) or home (intervention) evaluation. In the intervention arm, CHWs offered HIV testing to adults; collected sputum from symptomatic contacts and persons living with HIV (PLWHs) if ≥5 years; and transported sputum for microbiologic testing. CHWs referred PLWHs, children <5 years, and anyone unable to complete sputum testing to clinic. Sputum testing results and/or follow-up instructions were returned by automated SMS texts. The primary outcome was completion of a full TB evaluation within 14 days; secondary outcomes were TB and HIV diagnoses and treatments among screened contacts.ResultsThere were 471 contacts of 190 index patients allocated to the intervention and 448 contacts of 182 index patients allocated to the standard-of-care. CHWs identified 190/471 (40%) intervention and 213/448 (48%) standard-of-care contacts requiring TB evaluation. In the intervention arm, CHWs obtained sputum from 35/91 (39%) of sputum-eligible contacts and SMSs were sent to 95/190 (50%). Completion of TB evaluation in the intervention and standard-of-care arms at 14 days (14% versus 15%; difference −1%, 95% CI −9% to 7%, p=0.81) and yields of confirmed TB (1.5% versus 1.1%, p=0.62) and new HIV (2.0% versus 1.8%, p=0.90) diagnoses were similar.ConclusionsHome-based, SMS-facilitated evaluation did not improve completion or yield of household TB contact investigation, likely due to challenges delivering the intervention components.
Background Mobile health (mHealth) interventions are becoming more common in low-income countries. Existing research often overlooks implementation challenges associated with the design and technology requirements of mHealth interventions. Objective We aimed to characterize the challenges that we encountered in the implementation of a complex mHealth intervention in Uganda. Methods We customized a commercial mobile survey app to facilitate a two-arm household-randomized, controlled trial of home-based tuberculosis (TB) contact investigation. We incorporated digital fingerprinting for patient identification in both study arms and automated SMS messages in the intervention arm only. A local research team systematically documented challenges to implementation in biweekly site visit reports, project management reports, and minutes from biweekly conference calls. We then classified these challenges using the Consolidated Framework for Implementation Research (CFIR). Results We identified challenges in three principal CFIR domains: (1) intervention characteristics, (2) inner setting, and (3) characteristics of implementers. The adaptability of the app to the local setting was limited by software and hardware requirements. The complexity and logistics of implementing the intervention further hindered its adaptability. Study staff reported that community health workers (CHWs) were enthusiastic regarding the use of technology to enhance TB contact investigation during training and the initial phase of implementation. After experiencing technological failures, their trust in the technology declined along with their use of it. Finally, complex data structures impeded the development and execution of a data management plan that would allow for articulation of goals and provide timely feedback to study staff, CHWs, and participants. Conclusions mHealth technologies have the potential to make delivery of public health interventions more direct and efficient, but we found that a lack of adaptability, excessive complexity, loss of trust among end users, and a lack of effective feedback systems can undermine implementation, especially in low-resource settings where digital services have not yet proliferated. Implementers should anticipate and strive to avoid these barriers by investing in and adapting to local human and material resources, prioritizing feedback from end users, and optimizing data management and quality assurance procedures. Trial Registration Pan-African Clinical Trials Registration PACTR201509000877140; https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=877
Background Adherence to and completion of tuberculosis (TB) treatment remain problematic in many high-burden countries. 99DOTS is a low-cost digital adherence technology that could increase TB treatment completion. Methods and findings We conducted a pragmatic stepped-wedge cluster-randomized trial including all adults treated for drug-susceptible pulmonary TB at 18 health facilities across Uganda over 8 months (1 December 2018–31 July 2019). Facilities were randomized to switch from routine (control period) to 99DOTS-based (intervention period) TB treatment supervision in consecutive months. Patients were allocated to the control or intervention period based on which facility they attended and their treatment start date. Health facility staff and patients were not blinded to the intervention. The primary outcome was TB treatment completion. Due to the pragmatic nature of the trial, the primary analysis was done according to intention-to-treat (ITT) and per protocol (PP) principles. This trial is registered with the Pan African Clinical Trials Registry (PACTR201808609844917). Of 1,913 eligible patients at the 18 health facilities (1,022 and 891 during the control and intervention periods, respectively), 38.0% were women, mean (SD) age was 39.4 (14.4) years, 46.8% were HIV-infected, and most (91.4%) had newly diagnosed TB. In total, 463 (52.0%) patients were enrolled on 99DOTS during the intervention period. In the ITT analysis, the odds of treatment success were similar in the intervention and control periods (adjusted odds ratio [aOR] 1.04, 95% CI 0.68–1.58, p = 0.87). The odds of treatment success did not increase in the intervention period for either men (aOR 1.24, 95% CI 0.73–2.10) or women (aOR 0.67, 95% CI 0.35–1.29), or for either patients with HIV infection (aOR 1.51, 95% CI 0.81–2.85) or without HIV infection (aOR 0.78, 95% CI 0.46–1.32). In the PP analysis, the 99DOTS-based intervention increased the odds of treatment success (aOR 2.89, 95% CI 1.57–5.33, p = 0.001). The odds of completing the intensive phase of treatment and the odds of not being lost to follow-up were similarly improved in PP but not ITT analyses. Study limitations include the likelihood of selection bias in the PP analysis, inability to verify medication dosing in either arm, and incomplete implementation of some components of the intervention. Conclusions 99DOTS-based treatment supervision did not improve treatment outcomes in the overall study population. However, similar treatment outcomes were achieved during the control and intervention periods, and those patients enrolled on 99DOTS achieved high treatment completion. 99DOTS-based treatment supervision could be a viable alternative to directly observed therapy for a substantial proportion of patients with TB. Trial registration Pan-African Clinical Trials Registry (PACTR201808609844917).
Most urban household TB contacts and rural clinic attendees reported having access to a mobile phone and willingness to receive TB-related personal-health communications by voice call or SMS. However, frequent phone sharing and variable messaging abilities and preferences suggest a need to tailor the design and monitoring of mHealth interventions to target recipients.
SettingSeven public tuberculosis (TB) units in Kampala, Uganda, where Uganda’s national TB program recently introduced household contact investigation, as recommended by 2012 guidelines from WHO.ObjectiveTo apply a cascade analysis to implementation of household contact investigation in a programmatic setting.DesignProspective, multi-center observational study.MethodsWe constructed a cascade for household contact investigation to describe the proportions of: 1) index patient households recruited; 2) index patient households visited; 3) contacts screened for TB; and 4) contacts completing evaluation for, and diagnosed with, active TB.Results338 (33%) of 1022 consecutive index TB patients were eligible for contact investigation. Lay health workers scheduled home visits for 207 (61%) index patients and completed 104 (50%). Among 287 eligible contacts, they screened 256 (89%) for symptoms or risk factors for TB. 131 (51%) had an indication for further TB evaluation. These included 59 (45%) with symptoms alone, 58 (44%) children <5, and 14 (11%) with HIV. Among 131 contacts found to be symptomatic or at risk, 26 (20%) contacts completed evaluation, including five (19%) diagnosed with and treated for active TB, for an overall yield of 1.7%. The cumulative conditional probability of completing the entire cascade was 5%.ConclusionMajor opportunities exist for improving the effectiveness and yield of TB contact investigation by increasing the proportion of index households completing screening visits by lay health workers and the proportion of at-risk contacts completing TB evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.