Polymerizations and mechanistic studies have been performed to understand the kinetic pathways for the\ud polymerization of the monomer oligo(ethylene oxide)\ud monomethyl ether acrylate (OEOA) in aqueous media.\ud Typically, the medium consisted of 18 wt % OEOA in\ud water, in the presence of Cu catalysts coordinated by tris[2(dimethylamino)ethyl]amine (Me6TREN). Well-controlled\ud polymerization of OEOA can be achieved in the presence of\ud halide anions and Cu wire with≲600 ppm of soluble CuII\ud species, rather than previously reported ca. 10 000 ppm of CuII and Cu0 particles formed by predisproportionation of CuI prior to monomer and initiator addition. The mechanistic studies conclude that even though disproportionation is thermodynamically favored in aqueous media, the SARA ATRP, not SET-LRP,\ud mechanism holds in these reactions. This is because alkyl halides are much more rapidly activated by CuI than by Cu0\ud (contribution of Cu0 to activation is <1%). Because of the high activity of CuI species toward alkyl halide activation,\ud [CuI/Me6TREN] in solution is very low (<5μM) and classical ATRP equilibrium between CuI and CuII species is maintained.\ud Although in aqueous media disproportionation of CuI/Me6TREN is thermodynamically favored over comproportionation, unexpectedly, in the presence of alkyl halides, i.e., during polymerization, disproportionation is kinetically minimized.\ud Disproportionation is slow because its rate is proportional to [CuI/Me6TREN]2 and [CuI/Me6TREN] is very small. Thus, during polymerization, comproportionation is 104 times faster than disproportionation, and the final thermodynamic equilibrium between disproportionation and comproportionation could be reached only after polymerization is completed. Activation of alkyl\ud halides by CuI/Me6TREN in aqueous media occurs 8 orders of magnitude faster than disproportionation
Antimicrobial polymers represent a very promising class of therapeutics with unique characteristics for fighting microbial infections. As the classic antibiotics exhibit an increasingly low capacity to effectively act on microorganisms, new solutions must be developed. The importance of this class of materials emerged from the uncontrolled use of antibiotics, which led to the advent of multidrug-resistant microbes, being nowadays one of the most serious public health problems. This review presents a critical discussion of the latest developments involving the use of different classes of antimicrobial polymers. The synthesis pathways used to afford macromolecules with antimicrobial properties, as well as the relationship between the structure and performance of these materials are discussed.
Inorganic sulfites such as sodium dithionite (Na 2 S 2 O 4 ), sodium metabisulfite (Na 2 S 2 O 5 ), and sodium bisulfite (NaHSO 3 ) have been studied as reducing agents for atom transfer radical polymerization (ATRP). They act not only as very efficient reducing agents but also as supplemental activators for SARA (supplemental activator and reducing agent) ATRP of methyl acrylate in DMSO at ambient temperature. In combination with Cu(II)Br 2 /Me 6 TREN, they produced poly(methyl acrylate) with controlled molecular weight, low dispersity (M w /M n = 1.05), and well-defined chain-end functionality. Sulfites are eco-friendly, approved by FDA as food and beverage additives, and used commercially in many industrial processes.
Controlled/“living” radical polymerization (CLRP) of vinyl chloride (VC) via the reversible addition–fragmentation chain transfer (RAFT) process is reported for the first time. The cyanomethyl methyl(phenyl)carbamodithioate (CMPCD) was found to be an efficient RAFT agent enabling the CLRP polymerization of VC monomer under certain experimental conditions. Two different radical initiators, having very distinct half-life times at room temperature, were employed in this study. The kinetic studies of RAFT polymerization of VC show a linear increase of the molecular weight with the monomer conversion and the lowest polydispersity (PDI) ever reported for poly(vinyl chloride) (PVC) synthesized with CLRP method (PDI ∼ 1.4). The resulting PVC was fully characterized using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), 1H nuclear magnetic resonance spectroscopy (1H NMR), and gel permeation chromatography (GPC) techniques. The 1H NMR and MALDI-TOF-MS analysis of PVC prepared via RAFT polymerization method have shown the absence of structural defects and the presence of chain-end functional groups. The “livingness” of the PVC was also confirmed by a successful reinitiation experiment. The suitability of the RAFT agent was also confirmed via high-level ab initio molecular orbital calculations.
The field of transition-metal-mediated controlled/"living" radical polymerization (CLRP) has become the subject of intense discussion regarding the mechanism of this widely-used and versatile process. Most mechanistic analyses (atom transfer radical polymerization (ATRP) vs. single-electron transfer living radical polymerization (SET-LRP)) have been based on model experiments, which cannot correctly mimic the true reaction conditions. We present, for the first time, a determination of the [Cu(I)Br]/[L] (L=nitrogen-based chelating ligand) ratio and the extent of Cu(I)Br/L disproportionation during CLRP of methyl acrylate (MA) in dimethylsulfoxide (DMSO) with Cu(0) wire as a transition-metal catalyst source. The results suggest that Cu(0) acts as a supplemental activator and reducing agent of Cu(II)Br(2)/L to Cu(I)Br/L. More importantly, the Cu(I)Br/L species seem to be responsible for the activation of SET-LRP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.