Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are synthetic chemical compounds widely used in different industry fields including food contact materials (FCM), providing resistance to fat and humidity, and non-stick properties. PFAS enter into the food chain directly from the intake of contaminated food or indirectly from the migration of the FCM into the food. This exposure published in different research highlights a public health concern. Therefore, it is necessary to perform analysis of the content of different FCM and evaluate the migration from the FCM under normal conditions of use and storage. This bibliographical review proves that different perfluoroalkyl and polyfluoroalkyl compounds are detected in fast food packaging, microwave popcorn bags, and frying pans, among others. Furthermore, it shows the conditions or factors that favor the migration of the PFAS from the FCM into the food.
The main aim of this review was to assess the incidence of Pb, Hg and Cd in seafood from African countries on the Indian and the Red Sea coasts and the level of their monitoring and control, where the direct consumption of seafood without quality control are frequently due to the poverty in many African countries. Some seafood from African Indian and the Red Sea coasts such as mollusks and fishes have presented Cd, Pb and Hg concentrations higher than permitted limit by FAOUN/EU regulations, indicating a possible threat to public health. Thus, the operationalization of the heavy metals (HM) monitoring and control is strongly recommended since these countries have laboratories with minimal conditions for HM analysis.
Xanthohumol (XN) is the main prenylated chalcone present in hops (Humulus lupulus) with high biological activity, and it is of great importance for human health because of its antioxidant, anti-inflammatory, immunosuppressive and chemopreventive properties. This polyphenol can be included in the diet through foods in which hops are used, such as beer or food supplements. Because of their health benefits and the increasing interest of using hops as a novel nutraceutical, the aim of this work was the identification and quantification of XN in different types of samples using a method based on high resolution liquid chromatography with a diode array detector (HPLC–DAD). The method was validated in terms of linearity, limits of detection (LOD) and quantification (LOQ), repeatability and recovery. Acceptable linearity (r2 0.9999), adequate recovery (>90% in the most of cases) and good sensitivity (LOD 16 µg/L) were obtained. Furthermore, the presence of XN in all samples was confirmed using liquid chromatography coupled to mass spectrometry (LC-MS/MS) operated in negative ESI (electrospray system ionization) mode. The concentrations of XN determined in hop flowers and food supplements were above the LOQ, in a range between 0.106 and 12.7 mg/g. Beer may also represent an important source of dietary prenylflavonoids, with between 0.028 and 0.062 mg/L of XN. The results showed that the methodology proposed was suitable for the determination of XN in the different types of samples studied, and the amounts of XN varied significantly according to the selected product.
Polymeric coating formulations may contain different components such as cross-linking agents, resins, lubricants, and solvents, among others. If the reaction process or curing conditions are not applied in a proper way, these components may remain unreacted in the polymeric network and could be released and migrate into foods. In this study, several polyester coatings intended for food contact were investigated. Firstly, Fourier-transform infrared spectroscopy with an attenuated total reflectance (ATR-FTIR) spectrometer and confocal Raman microscopy were used to identify the type of coating. Then, different techniques, including gas chromatography coupled to mass spectrometry (GC-MS) and analysis by matrix-assisted laser desorption coupled to time-of-flight mass spectrometry (MALDI-TOF-MS), among others, were used to investigate the potential volatile and non-volatile migrants. Moreover, migration assays were carried out to evaluate the presence of monomers and to tentatively identify possible oligomers below 1000 Da. The analyses were performed by liquid chromatography coupled to ion trap mass spectrometry (LC-MSn). Using the information collected from each analytical technique, it was possible to elucidate some of the starting substances used in the formulation of the polyester coatings analyzed in this study. In migration tests, several polyester oligomers were tentatively identified for which there is not toxicological data available and, therefore, no migration limits established to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.