-Few shear test techniques exist that cover the range of strain rates from static to dynamic. In this work, a novel specimen geometry is presented that can be used for the characterisation of the shear behaviour of sheet metals over a wide range of strain rates using traditional tensile test devices. The main objectives during the development of the shear specimen have been 1) obtaining a homogeneous stress state with low stress triaxiality in the zone of the specimen subjected to shear and 2) appropriateness for dynamic testing. Additionally, avoiding premature specimen failure due to edge effects was aimed at. Most dimensional and practical constraints arose from the dynamic test in which the specimen is loaded by mechanical waves in a split Hopkinson tensile bar device. Design of the specimen geometry is based on finite element simulations using ABAQUS/Explicit. The behaviour of the specimen is compared with the more traditionally used simple shear specimen with clamped grips. Advantages of the new technique are shown. The technique is applied to Ti6Al4V sheet. During the high strain rate experiments high speed photography and digital image correlation are used to obtain the local shear strain in the specimen. Comparison of experimental and numerical results shows good correspondence.
This article details the ESAFORM Benchmark 2021. The deep drawing cup of a 1 mm thick, AA 6016-T4 sheet with a strong cube texture was simulated by 11 teams relying on phenomenological or crystal plasticity approaches, using commercial or self-developed Finite Element (FE) codes, with solid, continuum or classical shell elements and different contact models. The material characterization (tensile tests, biaxial tensile tests, monotonic and reverse shear tests, EBSD measurements) and the cup forming steps were performed with care (redundancy of measurements). The Benchmark organizers identified some constitutive laws but each team could perform its own identification. The methodology to reach material data is systematically described as well as the final data set. The ability of the constitutive law and of the FE model to predict Lankford and yield stress in different directions is verified. Then, the simulation results such as the earing (number and average height and amplitude), the punch force evolution and thickness in the cup wall are evaluated and analysed. The CPU time, the manpower for each step as well as the required tests versus the final prediction accuracy of more than 20 FE simulations are commented. The article aims to guide students and engineers in their choice of a constitutive law (yield locus, hardening law or plasticity approach) and data set used in the identification, without neglecting the other FE features, such as software, explicit or implicit strategy, element type and contact model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.