Voltage-dependent potassium KCNQ2 (Kv7.2) channels play a prominent role in the control of neuronal excitability. These channels must associate with calmodulin to function correctly and, indeed, a mutation (R353G) that impairs this association provokes the onset of a form of human neonatal epilepsy known as benign familial neonatal convulsions (BFNC). We show here that perturbation of calmodulin binding leads to endoplasmic reticulum (ER) retention of KCNQ2, reducing the number of channels that reach the plasma membrane. Interestingly, elevating the expression of calmodulin in the BFNC mutant partially restores the intracellular distribution of the KCNQ channel. In contrast, overexpression of a Ca(2+)-binding incompetent calmodulin or sequestering of calmodulin promotes the retention of wild-type channels in the ER. Thus, a direct interaction with Ca(2+)-calmodulin appears to be critical for the correct activity of KCNQ2 potassium channels as it controls the channels' exit from the ER.
hStaufen is the human homolog of dmStaufen, a double-stranded (ds)RNA-binding protein involved in early development of the fly. hStaufen-containing complexes were purified by affinity chromatography from human cells transfected with a TAP-tagged hStaufen gene. These complexes showed a size >10 MDa. Untagged complexes with similar size were identified from differentiated human neuroblasts. The identity of proteins present in purified hStaufen complexes was determined by mass spectrometry and the presence of these proteins and other functionally related ones was verified by western blot. Ribosomes and proteins involved in the control of protein synthesis (PABP1 and FMRP) were present in purified hStaufen complexes, as well as elements of the cytoskeleton (tubulins, tau, actin and internexin), cytoskeleton control proteins (IQGAP1, cdc42 and rac1) and motor proteins (dynein, kinesin and myosin). In addition, proteins normally found in the nucleus, like nucleolin and RNA helicase A, were also found associated with cytosolic hStaufen complexes. The co-localization of these components with hStaufen granules in the dendrites of differentiated neuroblasts, determined by confocal immunofluorescence, validated their association in living cells. These results support the notion that the hStaufen-containing granules are structures essential in the localization and regulated translation of human mRNAs in vivo.
M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC), a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.