Reproductive physiology involves complex biological processes that can be disrupted by exposure to environmental contaminants. The effects of bisphenol A (BPA) on spermatogenesis and sperm quality is still unclear. The objective of this study was to investigate the reproductive toxicity of BPA at dosages considered to be safe (5 or 25mg BPA/kg/day). We assessed multiple sperm parameters, the relative expression of genes involved in the central regulation of the hypothalamic-pituitary-testicular axis, and the serum concentrations of testosterone, estradiol, LH and FSH. BPA exposure reduced sperm production, reserves and transit time. Significant damage to the acrosomes and the plasma membrane with reduced mitochondrial activity and increased levels of defective spermatozoa may have compromised sperm function and caused faster movement through the epididymis. BPA exposure reduced the serum concentrations of testosterone, LH and FSH and increased the concentration of estradiol. The relative gene expression revealed an increase in gonadotropin releasing hormone receptor (Gnrhr), luteinizing hormone beta (Lhb), follicle stimulating hormone beta (Fshb), estrogen receptor beta (Esr2) and androgen receptor (Ar) transcripts in the pituitary and a reduction in estrogen receptor alpha (Esr1) transcripts in the hypothalamus. In this study, we demonstrated for the first time that adult male exposure to BPA caused a reduction in sperm production and specific functional parameters. The corresponding pattern of gene expression is indicative of an attempt by the pituitary to reestablish normal levels of LH, FSH and testosterone serum concentrations. In conclusion, these data suggest that at dosages previously considered nontoxic to reproductive function, BPA compromises the spermatozoa and disrupts the hypothalamic-pituitary-gonadal axis, causing a state of hypogonadotropic hypogonadism.
Sexual differentiation in the brain takes place from late gestation to the early postnatal days. This is dependent on the conversion of circulating testosterone into estradiol by the enzyme aromatase. The glyphosate was shown to alter aromatase activity and decrease serum testosterone concentrations. Thus, the aim of this study was to investigate the effect of gestational maternal glyphosate exposure (50 mg/kg, NOAEL for reproductive toxicity) on the reproductive development of male offspring. Sixty-day-old male rat offspring were evaluated for sexual behavior and partner preference; serum testosterone concentrations, estradiol, FSH and LH; the mRNA and protein content of LH and FSH; sperm production and the morphology of the seminiferous epithelium; and the weight of the testes, epididymis and seminal vesicles. The growth, the weight and age at puberty of the animals were also recorded to evaluate the effect of the treatment. The most important findings were increases in sexual partner preference scores and the latency time to the first mount; testosterone and estradiol serum concentrations; the mRNA expression and protein content in the pituitary gland and the serum concentration of LH; sperm production and reserves; and the height of the germinal epithelium of seminiferous tubules. We also observed an early onset of puberty but no effect on the body growth in these animals. These results suggest that maternal exposure to glyphosate disturbed the masculinization process and promoted behavioral changes and histological and endocrine problems in reproductive parameters. These changes associated with the hypersecretion of androgens increased gonadal activity and sperm production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.