Despite their high potential, most of the clinically approved iron oxide (IO)-based contrast agents for magnetic resonance imaging (MRI) have been withdrawn from the market either due to safety issues or lack of sales. To address this challenge, erythrocyte membranes have been used to prepare IO-based T2 contrast agents with superior MRI properties and higher safety margin. A simple formulation procedure has been proposed, and the nanostructures’ morphology and physicochemical properties have been evaluated. We compared their performance in terms of contrast ability in MRI to the more clinically established magneto-liposomes and non-encapsulated nanoparticles (NPs). The encapsulation of 5-nm iron oxide nanoparticles (IO NPs) in the liposomes and erythrocyte membrane vesicles (EMVs) led to a significant improvement in their r2 relaxivity. r2 values increased to r2 = 188 ± 2 mM−1s−1 for magneto-liposomes and r2 = 269 ± 3 mM−1s−1 for magneto-erythrocyte membranes, compared to “free” IO NPs with (r2 = 12 ± 1 mM−1 s−1), measured at a 9.4 T MRI scanner. The superiority of magneto-erythrocyte membranes in terms of MRI contrast efficacy is clearly shown on T2-weighted MR images. Our study revealed the hemocompatibility of the developed contrast agents in the MRI-relevant concentration range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.