Several Dinophysis species produce diarrhoetic toxins (okadaic acid and dinophysistoxins) and pectenotoxins, and cause gastointestinal illness, Diarrhetic Shellfish Poisoning (DSP), even at low cell densities (<103 cells·L−1). They are the main threat, in terms of days of harvesting bans, to aquaculture in Northern Japan, Chile, and Europe. Toxicity and toxin profiles are very variable, more between strains than species. The distribution of DSP events mirrors that of shellfish production areas that have implemented toxin regulations, otherwise misinterpreted as bacterial or viral contamination. Field observations and laboratory experiments have shown that most of the toxins produced by Dinophysis are released into the medium, raising questions about the ecological role of extracelular toxins and their potential uptake by shellfish. Shellfish contamination results from a complex balance between food selection, adsorption, species-specific enzymatic transformations, and allometric processes. Highest risk areas are those combining Dinophysis strains with high cell content of okadaates, aquaculture with predominance of mytilids (good accumulators of toxins), and consumers who frequently include mussels in their diet. Regions including pectenotoxins in their regulated phycotoxins will suffer from much longer harvesting bans and from disloyal competition with production areas where these toxins have been deregulated.
Harmful algal blooms (HABs) of toxin-producing microalgae, mainly Alexandrium catenella, Dinophysis spp., and Pseudonitzschia australis, cause the severe illnesses referred to as paralytic, diarrheic, and amnesic shellfish poisoning. They therefore threaten the sustainable exploitation of bivalves, including in northern and southern Chile, sites of intensive shellfish aquaculture but also recurrent HABs. Exceptionally large blooms of the genera Pseudochattonella and Karenia recently occurred in the Patagonian fjords, leading to high fish mortalities (up to 40 000 t) and thus to very negative impacts on the salmon farming industry. The resulting economic losses were estimated to be US$800M. Here we examine past, present, and possible future trends of the main HAB-causative species in Chile, with the objective of improving risk assessments of shellfish poisoning and other hazardous events in the region and elsewhere.
Dinophysis acuta is a frequent seasonal lipophilic toxin producer in European Atlantic coastal waters associated with thermal stratification. In the Galician Rías, populations of D. acuta with their epicentre located off Aveiro (northern Portugal), typically co-occur with and follow those of Dinophysis acuminata during the upwelling transition (early autumn) as a result of longshore transport. During hotter than average summers, D. acuta blooms also occur in August in the Rías, when they replace D. acuminata. Here we examined a 30-year (1985-2014) time series of D. acuta from samples collected by the same method in the Galician Rías. Our main objective was to identify patterns of distribution and their relation with climate variability, and to explain the exceptional summer blooms of D. acuta in 1989-1990. A dome-shaped relationship was found between summer upwelling intensity and D. acuta blooms; cell maxima were associated with conditions where the balance between upwelling intensity and heating, leading to deepened thermoclines, combined with tidal phase (3 days after neap tides) created windows of opportunity for this species. The application of a generalized additive model based on biological (D. acuta inoculum) and environmental predictors (Cumulative June-August upwelling CUI, average June-August SST and tidal range) explained more than 70% of the deviance for the exceptional summer blooms of D. acuta, through a combination of moderate (35,000-50,000mskm) summer upwelling (CUI), thermal stratification (SST>17°C) and moderate tidal range (∼2.5m), provided D. acuta cells (inoculum) were present in July. There was no evidence of increasing trends in D. acuta bloom frequency/intensity nor a clear relationship with NAO or other long-term climatic cycles. Instead, the exceptional summer blooms of 1989-1990 appeared linked to extreme hydroclimatic anomalies (high positive anomalies in SST and NAO index), which affected most of the European Atlantic coast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.