In light of the successes of the Navier-Stokes equations in the study of fluid flows, similar continuum treatment of granular materials is a long-standing ambition. This is due to their wide-ranging applications in the pharmaceutical and engineering industries as well as to geophysical phenomena such as avalanches and landslides. Historically this has been attempted through modification of the dissipation terms in the momentum balance equations, effectively introducing pressure and strain-rate dependence into the viscosity. Originally, a popular model for this granular viscosity, the Coulomb rheology, proposed rate-independent plastic behaviour scaled by a constant friction coefficient µ. Unfortunately, the resultant equations are always ill-posed. Mathematically ill-posed problems suffer from unbounded growth of short-wavelength perturbations, which necessarily leads to grid-dependent numerical results that do not converge as the spatial resolution is enhanced. This is unrealistic as all physical systems are subject to noise and do not blow up catastrophically. It is therefore vital to seek well-posed equations to make realistic predictions. The recent µ(I)-rheology is a major step forward, which allows granular flows in chutes and shear cells to be predicted. This is achieved by introducing a dependence on the non-dimensional inertial number I in the friction coefficient µ. In this paper it is shown that the µ(I)-rheology is well-posed for intermediate values of I, but that it is ill-posed for both high and low inertial numbers. This result is not obvious from casual inspection of the equations, and suggests that additional physics, such as enduring force chains and binary collisions, becomes important in these limits. The theoretical results are validated numerically using two implicit schemes for non-Newtonian flows. In particular, it is shown explicitly that at a given resolution a standard numerical scheme used to compute steady-uniform Bagnold flow is stable in the well-posed region of parameter space, but is unstable to small perturbations, which grow exponentially quickly, in the ill-posed domain.
The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system. Citation:Ancey, C., P. Bohorquez, and J. Heyman (2015), Stochastic interpretation of the advection-diffusion equation and its relevance to bed load transport, p particle volume (m 3 ).Gaussian noise increment (s −1∕2 ). b space and time Gaussian noise increment (m −1∕2 s −1∕2 ) .
International audienceIn gravel bed rivers, bed load transport exhibits considerable variability in time and space. Recently, stochastic bed load transport theories have been developed to address the mechanisms and effects of bed load transport fluctuations. Stochastic models involve parameters such as particle diffusivity, entrainment, and deposition rates. The lack of hard information on how these parameters vary with flow conditions is a clear impediment to their application to real-world scenarios. In this paper, we determined the closure equations for the above parameters from laboratory experiments. We focused on shallow supercritical flow on a sloping mobile bed in straight channels, a setting that was representative of flow conditions in mountain rivers. Experiments were run at low sediment transport rates under steady nonuniform flow conditions (i.e., the water discharge was kept constant, but bed forms developed and migrated upstream, making flow nonuniform). Using image processing, we reconstructed particle paths to deduce the particle velocity and its probability distribution, particle diffusivity, and rates of deposition and entrainment. We found that on average, particle acceleration, velocity, and deposition rate were responsive to local flow conditions, whereas entrainment rate depended strongly on local bed activity. Particle diffusivity varied linearly with the depth-averaged flow velocity. The empirical probability distribution of particle velocity was well approximated by a Gaussian distribution when all particle positions were considered together. In contrast, the particles located in close vicinity to the bed had exponentially distributed velocities. Our experimental results provide closure equations for stochastic or deterministic bed load transport models. ©2016. American Geophysical Union. All Rights Reserved
We investigate the stability properties and flow regimes of laminar wakes behind slender cylindrical bodies, of diameter D and length L, with a blunt trailing edge at zero angle of attack, combining experiments, direct numerical simulations and local/global linear stability analyses. It has been found that the flow field is steady and axisymmetric for Reynolds numbers below a critical value, Recs (L/D), which depends on the length-to-diameter ratio of the body, L/D. However, in the range of Reynolds numbers Recs(L/D) < Re < Reco(L/D), although the flow is still steady, it is no longer axisymmetric but exhibits planar symmetry. Finally, for Re > Reco, the flow becomes unsteady due to a second oscillatory bifurcation which preserves the reflectional symmetry. In addition, as the Reynolds number increases, we report a new flow regime, characterized by the presence of a secondary, low frequency oscillation while keeping the reflectional symmetry. The results reported indicate that a global linear stability analysis is adequate to predict the first bifurcation, thereby providing values of Recs nearly identical to those given by the corresponding numerical simulations. On the other hand, experiments and direct numerical simulations give similar values of Reco for the second, oscillatory bifurcation, which are however overestimated by the linear stability analysis due to the use of an axisymmetric base flow. It is also shown that both bifurcations can be stabilized by injecting a certain amount of fluid through the base of the body, quantified here as the bleed-to-free-stream velocity ratio, Cb = Wb/W∞.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.