Antibiotics have been extensively used against infections produced by Piscirickettsia salmonis, a fish pathogen and causative agent of piscirickettsiosis and one of the major concerns for the Chilean salmon industry. Therefore, the emergence of resistant phenotypes is to be expected. With the aim of obtaining a landscape of the antimicrobial resistance of P. salmonis in Chile, the susceptibility profiles for quinolones, florfenicol and oxytetracycline (OTC) of 292 field isolates derived from main rearing areas, different hosts and collected over 5 years were assessed. The results allowed for the determination of epidemiological cut-off values that were used to characterize the pathogen population. This work represents the first large-scale field study addressing the antimicrobial susceptibility of P. salmonis, providing evidence of the existence of resistant types with a high incidence of resistance to quinolones. Remarkably, despite the amounts and frequency of therapies, our results disclosed that the issue of resistance to florfenicol and OTC is still in the onset.
Early reports accounted for two main genotypes of Piscirickettsia salmonis, a fish pathogen and causative agent of piscirickettsiosis, placing the single isolate EM-90 apart from the prototypic LF-89 and related isolates. In this study, we provide evidence that, contrary to what has been supposed, the EM-90-like isolates are highly prevalent and disseminated across Chilean marine farms. Molecular analysis of 507 P. salmonis field isolates derived from main rearing areas, diverse hosts and collected over 6 years, revealed that nearly 50% of the entire collection were indeed typed as EM-90-like. Interestingly, these isolates showed a marked host preference, being recovered exclusively from Atlantic salmon (Salmo salar) samples. Although both strains produce undistinguishable pathological outcomes, differences regarding growth kinetics and susceptibility to the antibiotics and bactericidal action of serum could be identified. In sum, our results allow to conclude that the EM-90-like isolates represent an epidemiologically relevant group in the current situation of piscirickettsiosis. Based on the consistency between genotype and phenotype exhibited by this strain, we point out the need for genotypic studies that may be as important for the Chilean salmon industry as the continuous surveillance of antimicrobial susceptibility patterns.
Outbreaks caused by Piscirickettsia salmonis are one of the major threats to the sustainability of the Chilean salmon industry. We report here the annotated draft genomes of two P. salmonis isolates recovered from different salmonid species. A comparative analysis showed that the number of virulence-associated secretion systems constitutes a main genomic difference.
Tenacibaculum-like bacilli have recently been isolated from diseased sea-reared Atlantic salmon in outbreaks that took place in the XI region (Región de Aysén) of Chile. Molecular typing identified the bacterium as Tenacibaculum dicentrarchi. Here, we report the complete genome sequence of the AY7486TD isolate recovered during those outbreaks.
Petroleum ether extracts of 33 species of macroscopic seaweeds (Chlorophyta, Rhodophyta and Phaeophyta) were assayed for their antibacterial activity against Sarcina lutea ATCC 1001, Staphylococcus aureus ATCC 6538 P and Bacillus subtilis ATCC 6633. Some degree of antibacterial activity was found to be present in ] 7 of these 33 extracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.