Many immune parameters exhibit daily and circadian oscillations, including the number of circulating cells and levels of cytokines in the blood. Mice also have a differential susceptibility to lipopolysaccharide (LPS or endotoxin)-induced endotoxic shock, depending on the administration time in the 24 h light-dark (LD) cycle. We replicated these results in LD, but we did not find temporal differences in LPS-induced mortality in constant darkness (DD). Animals challenged with LPS showed only transient effects on their wheel locomotor activity rhythm without modification of circadian period and phase. Levels of several key factors involved in the pathology of sepsis and septic shock were tested in LD. We found that LPS-induced levels of interleukin (IL)-1beta, IL-6, JE (MCP-1), and MIP1alpha were significantly higher at zeitgeber time (ZT) 11 (time of increased mortality) than at ZT19 (ZT12 = time of lights-off in the animal quarters for the 12L:12D condition). Our results indicate that the differences found in mortality that are dependent on the time of LPS-challenge are not directly related to an endogenous circadian clock, and that some relevant immune factors in the development of sepsis are highly induced at ZT11, the time of higher LPS-induced mortality, compared to ZT19.
Gene expression is adjusted according to cellular needs through a combination of mechanisms acting at different layers of the flow of genetic information. At the posttranscriptional level, RNA-binding proteins are key factors controlling the fate of nascent and mature mRNAs. Among them, the members of the CsrA family are small dimeric proteins with heterogeneous distribution across the bacterial tree of life, that act as global regulators of gene expression because they recognize characteristic sequence/structural motifs (short hairpins with GGA triplets in the loop) present in hundreds of mRNAs. The regulatory output of CsrA binding to mRNAs is counteracted in most cases by molecular mimic, non-protein coding RNAs that titrate the CsrA dimers away from the target mRNAs. In γ-proteobacteria, the regulatory modules composed by CsrA homologs and the corresponding antagonistic sRNAs, are mastered by two-component systems of the GacS-GacA type, which control the transcription and the abundance of the sRNAs, thus constituting the rather linear cascade Gac-Rsm that responds to environmental or cellular signals to adjust and coordinate the expression of a set of target genes posttranscriptionally. Within the γ-proteobacteria, the genus Pseudomonas has been shown to contain species with different number of active CsrA (RsmA) homologs and of molecular mimic sRNAs. Here, with the help of the increasing availability of genomic data we provide a comprehensive state-of-the-art picture of the remarkable multiplicity of CsrA lineages, including novel yet uncharacterized paralogues, and discuss evolutionary aspects of the CsrA subfamilies of the genus Pseudomonas, and implications of the striking presence of csrA alleles in natural mobile genetic elements (phages and plasmids).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.