State-of-the-art GMR sensors are becoming increasingly popular for a variety of applications, due to of the progress in the area of magnetic field sensor technologies in the recent years. Especially in the area of nondestructive testing, the number of applications based on magnetic field sensors is steadily increasing. Until now, a major concern of these applications has been to improve the sensor's sensitivity to be able to measure even minimal magnetic field variations. However, an equally important characteristic, the sensor's spatial resolution, is often neglected in discussions. In this paper, the spatial resolution of two different GMR sensors is analyzed. The sensors are modeled as linear space-invariant systems. With the analytical solution for the magnetic field above a current carrying conductor and a corresponding measurement, the attainable spatial resolution is determined comparing two different deconvolution methods, an inverse and a Wiener filter. Finally, the determined sensor characteristics are used to improve the measurement accuracy significantly.
Zusammenfassung: Leistungselektronikbauteile sind in der Lage, Spannungen und Ströme im Bereich etlicher kV und kA zu steuern bzw. zu schalten. Dabei sind sie externen Einflüssen, wie zum Beispiel starken Temperaturschwankungen und mechanischen Erschütterungen, ausgesetzt. Infolgedessen ist die elektrische Verbindung zwischen dem Substrat und den Ausgangsanschlüssen von entscheidender Bedeutung. Diese Verbindung wird üblicherweise durch Drahtbonden hergestellt, wobei der Drahtdurchmesser von 70 µm bis über 400 µm reicht. Um die Strombelastbarkeit des Bauteils zu gewährleis-ten, müssen redundante Bonddrähte verbaut werden. Damit sind herkömmliche elektrische Tests nicht mehr in der Lage, einzelne fehlende oder fehlerhafte Bonddräh-te zu erkennen. Allerdings erzeugt jeder stromführende Draht ein Magnetfeld, welches analysiert werden kann. Dieser Beitrag präsentiert eine neue Messmethode basierend auf magnetooptischer Bildgebung zur Detektion fehlender Bonddrähte in einem Leistungs-MOSFET. Dafür wurde ein Messaufbau auf Basis des Faraday-Effekts entworfen, der es uns ermöglicht, magnetische Feldstärken im Bereich von 0,10 A/m mit einer hohen örtlichen Auflö-sung von ca. 22 µm zu messen. Schlüsselwörter: Magnetfeld, Faraday-Effekt, Zerstö-rungsfreie Bauteilprüfung, Messung und analytische Lösung.Abstract: Power electronic components are able to handle voltages and currents in the range of kV and kA. They also have to endure rough operating conditions, like short-term electrical overload and frequent changes of temperature.The electrical interconnections between the die and the output pins is crucial in this context. These interconnections are usually established via wire bonding, using thin wires with diameters ranging from 70 µm to up to 400 µm.To guarantee the current-carrying rating of the device redundant bonding is required. As a consequence, electrical tests are not able to detect the loss of single wires. However, any current-carrying wire will create a magnetic field. This paper presents a new measurement method based on magneto-optical imaging to detect missing bond wires within a power MOSFET chip. Therefor, a measurement setup based on the Faraday effect was realized, which enables us to resolve magnetic fields down to 0.10 A/m with a spatial resolution of approximately 22 µm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.