This paper will discuss an on-going NSF-CCLI grant that addresses improvements in student pedagogy and educational materials for the engineering thermodynamics curriculum by completing development of an online material titled "Engaged in Thermodynamics". The Engaged material is a textbook supplement based on actual engineering facilities and equipment. During Fall 2012 an engagement Opinionnaire was administered in two separate, and distinct, thermodynamics courses. Results indicate a student perception that preparing better for a course leads to improved performance in the course. However, there was no correlation between students' desire to learn and the amount of questions they ask in class. Regarding student interest, the results indicated it was higher for the course that used the Engaged material. Additional data collection and student focus groups will be ongoing.
This NSF CCLI Phase II project is focused on addressing improvements in student pedagogy and educational materials for the thermodynamics curriculum.The project intends to complete the development of the "Engineering Scenario" concept as a textbook supplement based on actual engineering facilities and real-world problems. The material is based on an expanded case study format and constructed in a web based format, allowing extensive integration of narrative, pictures, video, and web links to expand the background material. The Phase I project allowed for the development and testing of a single Scenario based on a local plant. Lessons learned from the previous assessment are guiding current development and expansion to include multiple facility types and locations for Phase II. This will be supplemented by input from student focus groups and readability test results.Assessment will occur at multiple institutions and will make use of engagement surveys, concept inventories, and student focus groups.Index Terms -active learning, pedagogies of engagement, problem based learning, thermodynamics.
In this paper, we will present a numerical model for estimating the thermal performance of unglazed transpired solar collectors located on the Breck School campus in Minneapolis, Minnesota. The solar collectors are installed adjacent to the southeast facing wall of a field house. The collectors preheat the intake air before entering the primary heating unit. The solar collector consists of 8 separate panels (absorber plates). Four fans are connected to the plenum that is created by the absorber plates and the adjoining field house wall. All fresh air for the field house is provided by the solar collectors before being filtered and heated by four, independent two stage natural gas fired heaters. Moreover, the following data were collected onsite using a data acquisition system: indoor field house space temperature, ambient air temperature, wind speed, wind direction, the plenum exit air temperature, the absorber plate temperature, and the air temperatures inside the plenum. The energy balance equations for the collector, the adjacent building wall, and the plenum are formulated. The numerical model is used to predict the air temperature rise inside the plenum, recaptured heat loss from the adjoining building wall, energy savings, and the efficiency of the collectors. The results of the numerical model are then compared to the results obtained from the onsite measurements; which are in good agreement. The model presented in this paper is simple yet accurate enough for architects and engineers to use it with ease to predict the thermal performance of a collector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.