River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.
Spatial and seasonal variability of sedimentary salinity, pH, redox potential and solid phase sulphide concentration were investigated in a range of mangrove communities along the coast of French Guiana. Seasonal depth distributions of these parameters and organic content were compared within Avicennia, Rhizophora and mixed mangrove stands at different stages of plant development. Mangrove communities and variable surface water inputs strongly impact sediment and ground water properties. In the upper sediment, changes in salinity are mainly controlled by seasonal conditions, transpiration and proximity of fresh water influx, whereas we suggest that constant basal salinity results from an accumulation of salt that has migrated as a result of density driven convection processes. There are no clear differences between the depth distributions of salinity obtained beneath Avicennia germinans and Rhizophora mangle stands, implying that plant zonations are not primarily controlled by soil salinity in this environment. Nevertheless, R. mangle grows in places subjected to the greatest variability in freshwater influxes, suggesting that Rhizophora might require or withstand occasional inundation by fresh water. Beneath Rhizophora stands, sediment properties reflect anaerobic and sulphidic conditions close to the sediment surface. In contrast, beneath Avicennia stands, sediment geochemistry mostly depends on the stages in forest development, on contents in sedimentary organic matter and on seasonal changes. In the early stage of Avicennia settlement, the sediment at the level of radial, pneumatophore-bearing cable roots, displays permanent suboxic conditions with Eh values reaching 400 mV. These high Ehs are interpreted as an effect of the oxidation produced by the cable root system. The development of mature Avicennia stands results in accumulation of sedimentary organic matter and promotes low Ehs and the reduction of pore-water sulphate. Near cable root level, the oxidation process observed in pioneer mangroves results in a reoxidation of solid sulphides produced previously. During dry conditions, the desiccation of the upper sediment adds its oxidation effects to those of root activity. As a result, suboxic processes dominate in the upper, 20-cm-thick layer; organic matter decomposition and sulphur oxidation strongly acidify the sediment. Below 20 cm, the sediment is anaerobic and sulphidic. Hence, sulphide concentrations depend on the edaphic conditions controlling decay processes and appear to be a consequence rather than a cause of the observed zonation of vegetal species. The small size of A. germinans propagules might have a significant influence on the extensive development of this plant community along the highly dynamic coastline of the Guianas. This study demonstrates that the different properties of pore-water were intimately linked and that the explanation of the evolution of this forest reflects a combination of multiple parameters. Moreover, it appeared that the organic content played a key role along with ...
The accumulation of nine heavy metals in fine-grained sediments from the mangrove fringed coast of French Guiana is evaluated. The dynamic features of the South American tropical coastline, from the Amazon to the Orinoco Rivers, result in mangrove sediments being alternately submitted to phases of erosion and net sedimentation a few tens of years long. This process influences the distribution of the heavy metals associated with these frequently re-mobilized deposits. Sedimentary cores and mangrove plant samples were collected, at different seasons, in various swamps characterized by different properties (content of sedimentary organic matter, distance from sea water and fresh water). The ranges of measured concentrations expressed in μmol g− 1 were the following: Cu (0.06 to 0.61), Co (0.12 to 0.68), Pb (0.08 to 0.18), Ni (0.32 to 0.76), Cr (0.61 to 1.40), Zn (1.25 to 5.94), Mn (4.36 to 45.4) and Fe (441 to 1128). No differences were found between sediments from mangroves developing upstream and downstream of urban areas, i.e. Cayenne and Kourou. This suggests that the content of mangrove sediments in heavy metals along the coastline of French Guiana is essentially the result of the continuous alternation of accumulation and transport phases occurring upstream after departing from the Amazon watershed. The sources of this heavy metals content are thus difficult to identify. However it is well known that the alluvium produced by the natural erosion of the Amazonian soils is naturally enriched in mercury. Also, the runoff from gold mining activities is known to contribute to mercury pollution. Ranges in total Hg were between 0.15 and 2.57 nmol g− 1, with mean values close to 0.41 nmol g− 1, and were clearly correlated with total organic carbon except for some outstanding high values, which may be a result of rapid geochemical changes. Heavy metal concentrations showed variations with depth. The redox conditions and the decay processes affecting the organic matter control the cycling of iron and manganese, which in turn control the concentrations and associations of heavy metals. These preliminary results suggest that the variations in heavy metal content with depth or between mangrove areas result largely from diagenetic processes rather than changes in metal input resulting from local human activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.