Programed cell death (PCD) or apoptosis is a naturally occurring cell suicide pathway induced in a variety of cell types. In many cases, PCD apparently arises as a result of competition for limiting amounts of survival signals. In this study, we have investigated the potential role of growth factors (GF), cytokines, and osteotropic hormones on osteoblast survival in vitro. Our results indicate that in the absence of any of these factors, osteoblasts rapidly undergo PCD, as determined by cell morphology, mitochondrial function, and nuclei fragmentation. Osteoblast survival was promoted by insulin-like growth factor I (IGF-I), IGF-II, insulin, and basic fibroblast growth factor (bFGF). Platelet-derived growth factor had no effect on osteoblast survival, but this GF potentiated the survival-promoting effects of IGF-I, IGF-II, and insulin. A similar effect occurred when bFGF was added in combination with either of the IGFs or insulin. The effects of the IGFs were blocked by alphaIR-3, an antibody to the type I IGF receptor, whereas the effects of insulin were only partially blocked. This antibody blocked the potentiating effects of platelet-derived growth factor on IGF-I-mediated osteoblast survival, but only partially blocked those of bFGF. Although a 100% survival of osteoblasts was seen in the presence of 2% FCS, the highest level attained by any of the above GF combinations was approximately 75%. The monocyte-derived factor, tumor necrosis factor-alpha (TNF alpha) was the only agent that enhanced PCD in this study. These results suggest that osteoblast survival is promoted by those GFs sequestrated in bone matrix and that the type I, but not the type II, IGF receptor is involved in the response. Our data also indicate that other unidentified GFs or components of the extracellular matrix may be involved in promoting osteoblast survival and that TNF alpha may abrogate their effects in vivo. We propose that these GFs may be released from bone matrix during phases of bone resorption and promote osteoblast survival, thereby playing an important role in bone remodeling, and that PCD induced by TNF alpha may contribute to the bone loss in inflammatory bone disease.
Summary Bacillus subtilis and its closest relatives have multiple rap-phr quorum sensing gene pairs that coordinate a variety of physiological processes with population density. Extra-chromosomal rap-phr genes are also present on mobile genetic elements, yet relatively little is known about their function. In this work, we demonstrate that Rap60-Phr60 from plasmid pTA1060 coordinates a variety of biological processes with population density including sporulation, cannibalism, biofilm formation and genetic competence. Similar to other Rap proteins that control sporulation, Rap60 modulates phosphorylation of the transcription factor Spo0A by acting as a phosphatase of Spo0F~P, an intermediate of the sporulation phosphorelay system. Additionally, Rap60 plays a noncanonical role in regulating the autophosphorylation of the sporulation-specific kinase KinA, a novel activity for Rap proteins. In contrast, Rap proteins that modulate genetic competence interfere with DNA binding by the transcription factor ComA. Rap60 regulates the activity of ComA in a unique manner by forming a Rap60–ComA–DNA ternary complex that inhibits transcription of target genes. Taken together, this work provides new insight into two novel mechanisms of regulating Spo0A and ComA by Rap60 and expands our general understanding of how plasmid-encoded quorum sensing pairs regulate important biological processes.
Email alerting services to receive free e-mail alerts when new articles cite this article www.gsapubs.org/cgi/alerts click Subscribe to subscribe to Geological Society of America Bulletin www.gsapubs.org/subscriptions/ click Permission request to contact GSA http://www.geosociety.org/pubs/copyrt.htm#gsa click to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to Notes scope of their employment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.