Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
Treatment of mammalian cells with the immunosuppressant rapamycin, a bacterial macrolide, selectively suppresses mitogen‐induced translation of an essential class of mRNAs which contain an oligopyrimidine tract at their transcriptional start (5′TOP), most notably mRNAs encoding ribosomal proteins and elongation factors. In parallel, rapamycin blocks mitogen‐induced p70 ribosomal protein S6 kinase (p70s6k) phosphorylation and activation. Utilizing chimeric mRNA constructs containing either a wild‐type or disrupted 5′TOP, we demonstrate that an intact polypyrimidine tract is required for rapamycin to elicit an inhibitory effect on the translation of these transcripts. In turn, a dominant‐interfering p70s6k, which selectively prevents p70s6k activation by blocking phosphorylation of the rapamycin‐sensitive sites, suppresses the translation of the chimeric mRNA containing the wild‐type but not the disrupted 5′TOP. Conversion of the principal rapamycin‐sensitive p70s6k phosphorylation site, T389, to an acidic residue confers rapamycin resistance on the kinase and negates the inhibitory effects of the macrolide on 5′TOP mRNA translation in cells expressing this mutant. The results demonstrate that the rapamycin block of mitogen‐induced 5′TOP mRNA translation is mediated through inhibition of p70s6k activation.
The bacterial macrolide rapamycin is an efficacious anticancer agent against solid tumors. In a hypoxic environment, the increase in mass of solid tumors is dependent on the recruitment of mitogens and nutrients. When nutrient concentrations change, particularly those of essential amino acids, the mammalian Target of Rapamycin (mTOR) functions in regulatory pathways that control ribosome biogenesis and cell growth. In bacteria, ribosome biogenesis is independently regulated by amino acids and adenosine triphosphate (ATP). Here we demonstrate that the mTOR pathway is influenced by the intracellular concentration of ATP, independent of the abundance of amino acids, and that mTOR itself is an ATP sensor.
Dysfunctional mTORC1 signaling is associated with a number of human pathologies owing to its central role in controlling cell growth, proliferation, and metabolism. Regulation of mTORC1 is achieved by the integration of multiple inputs, including those of mitogens, nutrients, and energy. It is thought that agents that increase the cellular AMP/ATP ratio, such as the anti-diabetic biguanides metformin and phenformin, inhibit mTORC1 through AMPK activation of TSC1/2-dependent or -independent mechanisms. Unexpectedly, we found that biguanides inhibit mTORC1 signaling, not only in the absence of TSC1/2, but also in the absence of AMPK. Consistent with these observations, in two distinct pre-clinical models of cancer and diabetes, metformin acts to suppress mTORC1 signaling in an AMPK-independent manner. We found that the ability of biguanides to inhibit mTORC1 activation and signaling is, instead, dependent on the Rag GTPases.
Activation of the protein p70s6k by mitogens leads to increased translation of a family of messenger RNAs that encode essential components of the protein synthetic apparatus. Activation of the kinase requires hierarchical phosphorylation at multiple sites, culminating in the phosphorylation of the threonine in position 229 (Thr229), in the catalytic domain. The homologous site in protein kinase B (PKB), Thr308, has been shown to be phosphorylated by the phosphoinositide-dependent protein kinase PDK1. A regulatory link between p70s6k and PKB was demonstrated, as PDK1 was found to selectively phosphorylate p70s6k at Thr229. More importantly, PDK1 activated p70s6k in vitro and in vivo, whereas the catalytically inactive PDK1 blocked insulin-induced activation of p70s6k.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.